-
提出一种宽带、高传输效率的双层超表面, 其单元结构是在介质层两边对称刻蚀结构参数相同的十字型金属贴片且将两层超表面沿y方向错位半个周期长度形成. 通过引入y方向的错位, 双层超表面的透射带宽得到大幅度提升. 同时, 采用等效电路理论分析了该双层超表面的带宽展宽机理. 在此基础上, 进一步结合Pancharatnam-Berry相位原理, 实现了宽带轨道角动量波束生成器. 实验和仿真结果表明, 在11—12.8 GHz的频率范围内, 器件能够将左旋圆极化波转换为携带轨道角动量的右旋圆极化波.
-
关键词:
- 双层超表面 /
- 宽带 /
- Pancharatnam-Berry相位 /
- 轨道角动量
A broadband and high-efficieny bi-layer metasurface is proposed in this paper. The unit cell of the metasurface is formed by symmetrically etching two cross-type metal patches on both sides of a dielectric plate. Furthermore, the two metal patches have a displacement of half a period along the y-axis. By employing the displacement, the transmission bandwidth of the bi-layer metasurface is significantly expanded. In order to obtain a physical insight into bandwidth broadening, a π-type equivalent circuit that presents the electromagnetic coupling between within the bi-layer metasurfaces is successfully extracted to investigate the influence of electromagnetic coupling on transmission performance. The results show that by shifting the metal patches along the y-axis by half a period, the coupling impedance (Z12 or Z21) of bi-layer metasurface can be significantly modified, which further changes the electromagnetic coupling of the bi-layer metasurface. Correspondingly, the impedances Zp and Zs in the π-type circuit are changed to approximately meet the resonant condition of circuit in broadband, resulting in the bandwidth expansion of the proposed device. By using Pancharatnam-Berry phase theory, we redesign the proposed metasurface unit cell into a broadband orbital angular momentum generator. The simulation and measurement results verify that the bi-layer metasurface can convert a left-hand circularly polarized wave into a right-hand circularly polarized wave carrying orbital angular momentum in a frequency range between 11 GHz and 12.8 GHz, demonstrating the performance of device.[1] Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar
[3] Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar
[4] Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar
[5] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[6] Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar
[7] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[8] Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar
[9] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar
[10] Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar
[11] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[12] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar
[13] Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar
[14] Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar
[15] West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar
[16] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar
[17] Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar
[18] Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar
[19] Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar
[20] Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar
[21] Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar
[22] Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar
[23] Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar
[24] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar
-
图 2 超表面对线极化波的响应(txx和tyy为x极化波和y极化波的同极化传输系数的振幅, φxx 和φyy为同极化传输系数的相位)
Fig. 2. Amplitude and phase of co-polarized transmission coefficient, where txx and tyy are amplitudes of co-polarized transmission coefficients for x- and y-polarized incident waves, and φxx and φyy correspond to the phase of txx and tyy.
表 1 与其他传输型超表面的性能对比(
${\lambda _0}$ 为中心频率对应的波长)Table 1. Comparison with other transmissive metasurface.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Babiker M, Power W L, Allen L 1994 Phys. Rev. Lett. 73 1239Google Scholar
[3] Tennant A, Allen B 2012 Electron. Lett. 48 1365Google Scholar
[4] Fahrbach F O, Simon P, Rohrbach A 2010 Nat. Photonics 4 780Google Scholar
[5] Yao A M, Padgett M J 2011 Adv. Opt. Photonics 3 161Google Scholar
[6] Duocastella M, Arnold C B 2012 Laser Photonics Rev. 6 607Google Scholar
[7] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi T, Istomin Y N, Ibragimov N, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[8] Tamburini F, Mari E, Thide B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar
[9] Mohammadi S M, Daldorff L K, Bergman J E, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2009 IEEE Trans. Antennas Propag. 58 565Google Scholar
[10] Tamburini F, Mari E, Sponselli A, Thide B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar
[11] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar
[12] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 1232009Google Scholar
[13] Momeni H A S M A, Behdad N 2016 IEEE Trans. Antennas Propag. 64 525Google Scholar
[14] Wakatsuchi H, Kim S, Rushton J J, Sievenpiper D F 2013 Phys. Rev. Lett. 111 245501Google Scholar
[15] West P R, Stewart J L, Kildishev A V, Shalaev V M, Shkunov V V, Strohkendl F, Zakharenkov Y A, Dodds R K, Byren R 2014 Opt. Express 22 26212Google Scholar
[16] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 1Google Scholar
[17] Yu S, Li L, Shi G, Zhu C, Shi Y 2016 Appl. Phys. Lett. 108 241901Google Scholar
[18] Achouri K, Lavigne G, Caloz C 2016 J. Appl. Phys. 120 235305Google Scholar
[19] Chen M L N, Li J J, Sha W E I 2017 IEEE Trans. Antennas Propag. 65 396Google Scholar
[20] Escuti M J, Kim J, Kudenov M W 2016 Opt. Photonics News 27 22Google Scholar
[21] Olk A E, Powell D A 2019 Phys. Rev. Appl. 11 064007Google Scholar
[22] Akram M R, Mehmood M Q, Bai X, Jin R, Premaratne M, Zhu W 2019 Adv. Opt. Mater. 7 1801628Google Scholar
[23] Akram M R, Bai X, Jin R, Vandenbosch G A, Premaratne M, Zhu W 2019 IEEE Trans. Antennas Propag. 67 4650Google Scholar
[24] Tang S, Cai T, Liang J G, Xiao Y, Zhang C W, Zhang Q, Hu Z, Jiang T 2019 Opt. Express 27 1816Google Scholar
计量
- 文章访问数: 6589
- PDF下载量: 193
- 被引次数: 0