-
Mode-locked fiber lasers output ultra-short pulse trains with extremely high temporal stability, showing great potential in systems that require precise timing synchronization, such as pump-probe experiments, high-speed analog-to-digital conversion, large-scale timing distribution and coherent combination. The fiber lasers are usually simpler, less costly, more efficient and more robust to the environment than solid state lasers, making them a better option for real-world applications. With the atto second temporal resolution of the balanced optical cross-correlation (BOC) method, timing jitter of mode-locked fiber lasers has been carefully measured and optimized over the last decade. However, due to the inherently large amplified spontaneous emission noise in the long gain fiber and broad pulse width inside the laser cavity, the quantum-noise-limited timing jitter of mode-locked fiber lasers is still much higher than that of the solid state lasers. In order to further optimize the timing synchronization of mode-locked fiber laser, larger locking bandwidth is required to suppress the low-frequency timing jitter, which contributes significantly to the total amount of residual timing jitter. In this work, tight timing synchronization between two mode-locked Yb-fiber lasers is achieved via a feedback loop built on an intra-cavity electro-optic phase modulator. Both lasers work in the stretched-pulse regime, which has been proven to support the lowest quantum-noise-limited timing jitter of mode-locked fiber laser. The output of the BOC system provides a timing error discriminator of 40 mV/fs, corresponding to 13 as resolution within the integration bandwidth. When the pulse trains from both lasers are successfully synchronized, the residual timing jitter can be measured with the same signal as that used for timing synchronization Based on the residual timing jitter measurement, the intra-cavity dynamics of the laser and the locking parameters of the feedback loop can be further optimized and a tight synchronization with 400 kHz locking bandwidth is finally achieved. When performing the integration from 1 Hz to 10 MHz, the residual timing error is as low as 109 as, corresponding to 77 as averaged timing jitter of each laser. A parallel out-of-loop single-arm cross-correlation measurement is also performed to test the validity of the in-loop results, and both measurements agree with each other.
-
Keywords:
- mode-locked fiber lasers /
- timing synchronization /
- timing jitter /
- balanced optical cross-correlation
[1] Schulz S, Grgura I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Prędki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun. 6 5938
[2] Domke M, Rapp S, Schmidt M, Huber H P 2012 Opt. Express 20 10330
[3] Khilo A, Spector S J, Grein M E, Nejadmalayeri A H, Holzwarth C W, Sander M Y, Dahlem M S, Peng M Y, Geis M W, DiLello N A, Yoon J U, Motamedi A, Orcutt J S, Wang J P, Sorace-Agaskar C M, Popović M A, Sun J, Zhou G R, Byun H, Chen J, Hoyt J L, Smith H I, Ram R J, Perrott M, Lyszczarz T M, Ippen E P, Krtner F X 2012 Opt. Express 20 4454
[4] Kim J, Park M J, Perrott M H, Krtner F X 2008 Opt. Express 16 16509
[5] Cox J A, Putnam W P, Sell A, Leitenstorfer A, Krtner F X 2012 Opt. Lett. 37 3579
[6] Fong B J, Lin W T, Wu S Y, Peng J L, Hsiang W W, Lai Y 2015 Opt. Lett. 40 966
[7] Hou D, Li P, Xi P, Zhao J, Zhang Z 2010 Chin. Opt. Lett. 8 993
[8] Zhang F, Hou D, Guo H P, Zhao J Y, Zhang Z G 2010 Acta Opt. Sin. 30 671 (in Chinese) [张帆, 候冬, 郭海鹏, 赵建业, 张志刚 2010 光学学报 30 671]
[9] Kim J, Cox J A, Chen J, Krtner F X 2008 Nat. Photon. 2 733
[10] Benedick A J, Fujimoto J G, Krtner F X 2012 Nat. Photon. 6 97
[11] Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 55 4161]
[12] Zhao H, Zhao Y Y, Tian J R, Wang P, Zhu J F, Ling W J, Wei Z Y 2008 Acta Phys. Sin. 57 892 (in Chinese) [赵环, 赵研英, 田金荣, 王鹏, 朱江峰, 令维军, 魏志义 2008 57 892]
[13] Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) [张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 61 044206]
[14] Song Y, Jung K, Kim J 2011 Opt. Lett. 36 1761
[15] Song Y, Kim C, Jung K, Kim H, Kim J 2011 Opt. Express 19 14518
[16] Kim T K, Song Y, Jung K, Kim C, Kim H, Nam C H, Kim J 2011 Opt. Lett. 36 4443
[17] Hudson D D, Holman K W, Jones R J, Cundiff Steven T, Ye J, Jones D J 2005 Opt. Lett. 30 2948
[18] Kim J, Chen J, Cox J, Krtner F X 2007 Opt. Lett. 32 3519
[19] Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947
[20] Kim J, Krtner F X 2009 Laser Photon. Rev. 4 432
[21] Haus H A, Mecozzi A 1993 IEEE J. Quantum Electron. 29 983
[22] Paschotta R 2004 Appl. Phys. B 79 163
-
[1] Schulz S, Grgura I, Behrens C, Bromberger H, Costello J T, Czwalinna M K, Felber M, Hoffmann M C, Ilchen M, Liu H Y, Mazza T, Meyer M, Pfeiffer S, Prędki P, Schefer S, Schmidt C, Wegner U, Schlarb H, Cavalieri A L 2015 Nat. Commun. 6 5938
[2] Domke M, Rapp S, Schmidt M, Huber H P 2012 Opt. Express 20 10330
[3] Khilo A, Spector S J, Grein M E, Nejadmalayeri A H, Holzwarth C W, Sander M Y, Dahlem M S, Peng M Y, Geis M W, DiLello N A, Yoon J U, Motamedi A, Orcutt J S, Wang J P, Sorace-Agaskar C M, Popović M A, Sun J, Zhou G R, Byun H, Chen J, Hoyt J L, Smith H I, Ram R J, Perrott M, Lyszczarz T M, Ippen E P, Krtner F X 2012 Opt. Express 20 4454
[4] Kim J, Park M J, Perrott M H, Krtner F X 2008 Opt. Express 16 16509
[5] Cox J A, Putnam W P, Sell A, Leitenstorfer A, Krtner F X 2012 Opt. Lett. 37 3579
[6] Fong B J, Lin W T, Wu S Y, Peng J L, Hsiang W W, Lai Y 2015 Opt. Lett. 40 966
[7] Hou D, Li P, Xi P, Zhao J, Zhang Z 2010 Chin. Opt. Lett. 8 993
[8] Zhang F, Hou D, Guo H P, Zhao J Y, Zhang Z G 2010 Acta Opt. Sin. 30 671 (in Chinese) [张帆, 候冬, 郭海鹏, 赵建业, 张志刚 2010 光学学报 30 671]
[9] Kim J, Cox J A, Chen J, Krtner F X 2008 Nat. Photon. 2 733
[10] Benedick A J, Fujimoto J G, Krtner F X 2012 Nat. Photon. 6 97
[11] Wang P, Zhao H, Wang Z H, Li D H, Wei Z Y 2006 Acta Phys. Sin. 55 4161 (in Chinese) [王鹏, 赵环, 王兆华, 李德华, 魏志义 2006 55 4161]
[12] Zhao H, Zhao Y Y, Tian J R, Wang P, Zhu J F, Ling W J, Wei Z Y 2008 Acta Phys. Sin. 57 892 (in Chinese) [赵环, 赵研英, 田金荣, 王鹏, 朱江峰, 令维军, 魏志义 2008 57 892]
[13] Zhang D P, Hu M L, Xie C, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 044206 (in Chinese) [张大鹏, 胡明列, 谢辰, 柴路, 王清月 2012 61 044206]
[14] Song Y, Jung K, Kim J 2011 Opt. Lett. 36 1761
[15] Song Y, Kim C, Jung K, Kim H, Kim J 2011 Opt. Express 19 14518
[16] Kim T K, Song Y, Jung K, Kim C, Kim H, Nam C H, Kim J 2011 Opt. Lett. 36 4443
[17] Hudson D D, Holman K W, Jones R J, Cundiff Steven T, Ye J, Jones D J 2005 Opt. Lett. 30 2948
[18] Kim J, Chen J, Cox J, Krtner F X 2007 Opt. Lett. 32 3519
[19] Schibli T R, Kim J, Kuzucu O, Gopinath J T, Tandon S N, Petrich G S, Kolodziejski L A, Fujimoto J G, Ippen E P, Kaertner F X 2003 Opt. Lett. 28 947
[20] Kim J, Krtner F X 2009 Laser Photon. Rev. 4 432
[21] Haus H A, Mecozzi A 1993 IEEE J. Quantum Electron. 29 983
[22] Paschotta R 2004 Appl. Phys. B 79 163
Catalog
Metrics
- Abstract views: 5900
- PDF Downloads: 235
- Cited By: 0