-
Blue laser with high power and high beam quality has many applications such as in laser display, underwater communication and imaging, and non-ferrous metal processing. Optically pumped external-cavity surface-emitting laser combines the advantages of both surface-emitting semiconductor lasers and solid-state disk lasers, and can produce high output power and good beam quality simultaneously. Its high intracavity circulating power is more conducive to intracavity frequency doubling, achieving high-power and high beam quality blue light through fundamental laser in the near-infrared waveband. This paper reports an efficient intracavity frequency doubled 490 nm high power blue light by using a 980 nm fundamental laser in an external-cavity surface-emitting laser. The V-type resonant cavity is formed by the high reflectivity distributed Bragg reflector (DBR) at the bottom of gain chip, a folded flat concave mirror (high reflectivity coated for 980 nm and anti-reflectivity coated for 490 nm), and a flat concave end mirror (high reflectivity coated for 980 nm and 490 nm). By inserting a nonlinear crystal LBO into the cavity at the beam waist formed by the folded mirror and end mirror, and employing a birefringent filter (BRF) to polarize the fundamental laser and narrow the linewidth of the laser, a high power and high beam quality blue laser with high conversion efficiency is obtained. The effects of different factors including the length of nonlinear crystal, the linewidth of fundamental laser, and the compensation of walk off angle on the output power of the blue laser are studied experimentally. The length of the nonlinear crystal is optimized based on the size of the fundamental laser beam waist at the position of the crystal in the resonant cavity. Under the type-I phase matching condition of LBO, over 6 W output power at 491 nm wavelength is obtained when the crystal length is 5 mm and the BRF thickness is 1 mm. The beam quality M2 factor in the x direction and the y direction are both 1.08, and the conversion efficiency of frequency doubling is 63%. The experimental results also show that symmetrically placed nonlinear crystals can compensate for the walk-off angle during frequency doubling to a certain extent, thereby clearly improving the conversion efficiency of the frequency doubled blue laser.
-
Keywords:
- intracavity frequency-doubled /
- external-cavity surface-emitting blue laser /
- type-I phase matching /
- compensation of walk off angle
[1] 高伟男, 许祖彦, 毕勇, 袁园 2020 中国工程科学 22 85Google Scholar
Gao W N, Xu Z Y, Bi Y, Yuan Y 2020 Strategic Study of CAE 22 85Google Scholar
[2] 马剑, 朱小磊, 陆婷婷, 马浩达 2022 光学学报 42 1714002
Ma J, Zhu X L, Lu T T, Ma H D 2022 Acta Opt. Sin. 42 1714002
[3] 杨永强, 温娅玲, 王迪, 周恒, 牛增强, 卢同杰 2022 焊接学报 43 80Google Scholar
Yang Y Q, Wen Y L, Wang D, Zhou H, Niu Z Q, Lu T J 2022 T. China Welding Instit. 43 80Google Scholar
[4] 顾波 2021 金属加工(热加工) 834 1
Gu B 2021 MW Metal Forming 834 1
[5] 王洪泽, 吴一, 王浩伟 2021 中国有色金属学报 31 3059Google Scholar
Wang H Z, Wu Y, Wang H W 2021 Chin. J. Nonferrous Metals 31 3059Google Scholar
[6] 高静, 于欣, 张文平, 彭江波, 于俊华, 王月珠 2007 光学技术 33 430Google Scholar
Gao J, Yu X, Zhang W P, Peng J B, Yu J H, Wang Y Z 2007 Opt. Tech. 33 430Google Scholar
[7] 杨天瑞, 徐欢, 梅洋, 许荣彬, 张保平, 应磊莹 2020 中国激光 47 151
Yang T R, Xu H, Mei Y, Xu R B, Zhang B P, Ying L Y 2020 Chin. J. Lasers 47 151
[8] 王玉坤, 郑重明, 龙浩, 梅洋, 张保平 2022 光子学报 51 39
Wang Y K, Zhen Z M, Long H, Mei Y, Zhang B P 2022 Acta Photon. Sin. 51 39
[9] 王渴, 韩金樑, 梁金华, 单肖楠, 王立军 2023 中国激光 50 62
Wang K, Han J L, Liang J H, Shan X N, Wang L J 2023 Chin. J. Lasers 50 62
[10] Kozlovsky W J, Lenth W, Latta E E, Moser A, Bona G L 1990 Appl. Phys. Lett. 56 2291Google Scholar
[11] Ye Z, Lou Q, Dong J, Wei Y, Lin L 2005 Opt. Lett. 30 73Google Scholar
[12] 董景星, 楼祺洪, 成序三, 凌磊, 魏运荣, 叶震寰, 周军 2006 光学学报 26 567Google Scholar
Dong J X, Lou Q H, Cheng X S, Ling L, Wei Y R, Ye Z H, Zhou J 2006 Acta Opt. Sin. 26 567Google Scholar
[13] 王旭葆, 丁鹏, 左铁钏 2008 红外与激光工程 S3 48
Wang X B, Ding P, Zuo T X 2008 Infrared Laser Eng. S3 48
[14] Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar
[15] Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar
[16] Raymond T D, Alford W J, Crawford M H, Allerman A A 1999 Opt. Lett. 24 1127Google Scholar
[17] Fan L, Hsu T C, Fallahi M, Murray J T, Bedford R, Kaneda Y, Stolz W 2006 Appl. Phys. Lett. 88 251117Google Scholar
[18] Kim G B, Kim J Y, Lee J, Yoo J, Kim K S, Lee S M, Park Y 2006 Appl. Phys. Lett. 89 181106Google Scholar
[19] Tinsley J N, Bandarupally S, Penttinen J P, Manzoor S, Ranta S, Salvi L, Poli N 2021 Opt. Express 29 25462Google Scholar
[20] Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2010 IEEE Photonic. Tech. L. 23 179
[21] Casel O, Woll D, Tremont M A, Fuchs H, Wallenstein R, Gerster E, Weyers M 2005 Appl. Phys. B-Lasers O. 81 443Google Scholar
[22] Gray A C, Woods J R, Carpenter L G, Kahle H, Berry S A, Tropper A C, Gawith C B 2020 Appl. Opt. 59 4921Google Scholar
[23] Chilla J L, Butterworth S D, Zeitschel A, Charles J P, Caprara A L, Reed M K, Spinelli L 2004 Solid State Lasers XIII:Technology and Devices 5332 143Google Scholar
[24] Boyd G D, Ashkin A, Dziedzic J M, Kleinman D A 1965 Phys. Rev. 137 A1305Google Scholar
[25] Zondy J J, Bonnin C, Lupinski D 2003 J. Opt. Soc. Am. B 20 1695Google Scholar
-
-
[1] 高伟男, 许祖彦, 毕勇, 袁园 2020 中国工程科学 22 85Google Scholar
Gao W N, Xu Z Y, Bi Y, Yuan Y 2020 Strategic Study of CAE 22 85Google Scholar
[2] 马剑, 朱小磊, 陆婷婷, 马浩达 2022 光学学报 42 1714002
Ma J, Zhu X L, Lu T T, Ma H D 2022 Acta Opt. Sin. 42 1714002
[3] 杨永强, 温娅玲, 王迪, 周恒, 牛增强, 卢同杰 2022 焊接学报 43 80Google Scholar
Yang Y Q, Wen Y L, Wang D, Zhou H, Niu Z Q, Lu T J 2022 T. China Welding Instit. 43 80Google Scholar
[4] 顾波 2021 金属加工(热加工) 834 1
Gu B 2021 MW Metal Forming 834 1
[5] 王洪泽, 吴一, 王浩伟 2021 中国有色金属学报 31 3059Google Scholar
Wang H Z, Wu Y, Wang H W 2021 Chin. J. Nonferrous Metals 31 3059Google Scholar
[6] 高静, 于欣, 张文平, 彭江波, 于俊华, 王月珠 2007 光学技术 33 430Google Scholar
Gao J, Yu X, Zhang W P, Peng J B, Yu J H, Wang Y Z 2007 Opt. Tech. 33 430Google Scholar
[7] 杨天瑞, 徐欢, 梅洋, 许荣彬, 张保平, 应磊莹 2020 中国激光 47 151
Yang T R, Xu H, Mei Y, Xu R B, Zhang B P, Ying L Y 2020 Chin. J. Lasers 47 151
[8] 王玉坤, 郑重明, 龙浩, 梅洋, 张保平 2022 光子学报 51 39
Wang Y K, Zhen Z M, Long H, Mei Y, Zhang B P 2022 Acta Photon. Sin. 51 39
[9] 王渴, 韩金樑, 梁金华, 单肖楠, 王立军 2023 中国激光 50 62
Wang K, Han J L, Liang J H, Shan X N, Wang L J 2023 Chin. J. Lasers 50 62
[10] Kozlovsky W J, Lenth W, Latta E E, Moser A, Bona G L 1990 Appl. Phys. Lett. 56 2291Google Scholar
[11] Ye Z, Lou Q, Dong J, Wei Y, Lin L 2005 Opt. Lett. 30 73Google Scholar
[12] 董景星, 楼祺洪, 成序三, 凌磊, 魏运荣, 叶震寰, 周军 2006 光学学报 26 567Google Scholar
Dong J X, Lou Q H, Cheng X S, Ling L, Wei Y R, Ye Z H, Zhou J 2006 Acta Opt. Sin. 26 567Google Scholar
[13] 王旭葆, 丁鹏, 左铁钏 2008 红外与激光工程 S3 48
Wang X B, Ding P, Zuo T X 2008 Infrared Laser Eng. S3 48
[14] Rahimi-Iman A 2016 J. Optics-UK 18 093003Google Scholar
[15] Guina M, Rantamäki A, Härkönen A 2017 J. Phy. D Appl. Phys. 50 383001Google Scholar
[16] Raymond T D, Alford W J, Crawford M H, Allerman A A 1999 Opt. Lett. 24 1127Google Scholar
[17] Fan L, Hsu T C, Fallahi M, Murray J T, Bedford R, Kaneda Y, Stolz W 2006 Appl. Phys. Lett. 88 251117Google Scholar
[18] Kim G B, Kim J Y, Lee J, Yoo J, Kim K S, Lee S M, Park Y 2006 Appl. Phys. Lett. 89 181106Google Scholar
[19] Tinsley J N, Bandarupally S, Penttinen J P, Manzoor S, Ranta S, Salvi L, Poli N 2021 Opt. Express 29 25462Google Scholar
[20] Hein A, Demaria F, Kern A, Menzel S, Rinaldi F, Rösch R, Unger P 2010 IEEE Photonic. Tech. L. 23 179
[21] Casel O, Woll D, Tremont M A, Fuchs H, Wallenstein R, Gerster E, Weyers M 2005 Appl. Phys. B-Lasers O. 81 443Google Scholar
[22] Gray A C, Woods J R, Carpenter L G, Kahle H, Berry S A, Tropper A C, Gawith C B 2020 Appl. Opt. 59 4921Google Scholar
[23] Chilla J L, Butterworth S D, Zeitschel A, Charles J P, Caprara A L, Reed M K, Spinelli L 2004 Solid State Lasers XIII:Technology and Devices 5332 143Google Scholar
[24] Boyd G D, Ashkin A, Dziedzic J M, Kleinman D A 1965 Phys. Rev. 137 A1305Google Scholar
[25] Zondy J J, Bonnin C, Lupinski D 2003 J. Opt. Soc. Am. B 20 1695Google Scholar
Catalog
Metrics
- Abstract views: 2376
- PDF Downloads: 109
- Cited By: 0