-
This paper proposes a quantum shortcuts to adiabaticity scheme based on physics-informed neural networks. Compared with traditional shortcuts to adiabaticity techniques, our approach innovatively integrates machine learning methodologies by employing parameterized physics-informed neural networks to solve parameterized differential equations. The neural networks serves as an approximating function for quantum adiabatic evolution processes, while incorporating parameter-dependent differential equations and various physical constraints as components of the loss function. Through networks training, we effectively simulate quantum system dynamics and derive driving control fields for population inversion. Numerical simulations demonstrate that the quantum system can achieve rapid population inversion within significantly reduced time while maintaining high fidelity and exceptional robustness against parameter fluctuations. The neural networks exhibit remarkable computational capabilities, particularly suitable for generating control functions in complex quantum systems. Compared with conventional counter-diabatic driving and transitionless quantum driving methods, this PINN-based framework not only achieves better control performance but also offers improved practicality for experimental implementations. The success of this methodology suggests promising applications in quantum control tasks including but not limited to quantum state preparation, quantum gate optimization, and adiabatic quantum computing acceleration.
-
Keywords:
- shortcuts to adiabaticity /
- deep learning /
- physics-Informed neural networks /
- differential equation
-
[1] Vitanov N V, Halfmann T, Shore B W 2001 Annu Rev. Phys. Chema. 52 763
[2] Law C K, Eberly J H 1996 Phys. Rev. Lett 76 1055
[3] Kuhn A, Hennrich M, BondoT 1999 Appl Phys. B 69 373
[4] Torosov B T, Guérin S, Vitanov N V 2011 Phys. Rev. Lett 106 233001
[5] Brif C, Chakrabarti R, Rabitz H 2010 New J. of Phys. 12 075008
[6] Demirplak M, Rice S A 2002 J Chem. Phys. 116 8028
[7] del Campo A 2011 Phys. Rev. A 84 031606
[8] del Campo A 2013 Phys. Rev. Lett 111 100502
[9] Tian L 2012 Phys. Rev. Lett 108 153604
[10] Berry M V 2009 J. Phys. A-Math. Theor. 42 365303
[11] Ibáñez S, Li Y C, Chen X 2015 Phys. Rev. A 92 062136
[12] Song X K, Ai Q, Qiu J 2016 Phys. Rev. A 93 052324
[13] Liu S, Chen Y H, Wang Y 2022 Phys. Rev. A 106 042430
[14] Masuda S, Nakamura K 2008 Phys. Rev. A 78 062108
[15] Masuda S, Nakamura K 2011 Phys. Rev. A 84 043434
[16] Zhu J J, Chen X 2021 Phys. Rev. A 103 023307
[17] Luo D W, Pyshkin P, Lam C H 2015 Phys. Rev. A 92 062127
[18] Kang Y H, Chen Y H, Huang B H 2017 Annalen der Physik 529 1700004
[19] Torrontegui E, Martínez-Garaot S, Muga J 2014 Phys. Rev. A 89 043408
[20] Güngördü U, Wan Y, FasihiM A 2012 Phys. Rev. A 86 062312
[21] Zhang Y, Zhang Y B, Chen L 2021 Acta Phys. Sin. 70 168702 (in Chinese) [张瑶 张云波 陈立 2021 70 168702]
[22] Tian S F, Li B 2023 Acta Phys. Sin. 72 100202 (in Chinese) [田十方 李彪 2023 72 100202]
[23] Fang B L, Wang J G, Feng G B 2022 Acta Phys. Sin. 71 200601(in Chinese)[方波浪 王建国 冯国斌 2022 71 200601]
[24] Cai Y H, He Y L, Lang S N, Cui X B, Zhang X Q, Yao Z J 2025 Computers and Geosciences 196 105857
[25] Nursyiva I, Maharani A B, Fatimah N H, Sugiyarto S, Danang A P 2025 Results in Applied Mathematics 25 100539
[26] Ko T, Kim D; Park J, Lee S H 2025 Applied Energy 382 125318
[27] Zheng J Ch, Yang Y L 2024 Applied Soft Computing 167 112370
[28] Chen X, Peng W Q 2025 Commun. Theor. Phys. 77 025002
[29] Roy A, Chatterjee T, Adhikari S 2024 Probabilistic Engineering Mechanics 78 103701
[30] Han J, Jentzen A, Weinan E 2018 Proc. Natl. Acad. Sci. 115 8505
[31] Rudy H S, Brunton L S, Proctor L J, Kutz N 2017 Sci. Adv.3 e1602614
[32] Raissi M, Karniadakis G E 2018 J. Comput. Phys. 357 125
[33] Li J, Chen Y 2021 Commun. Theor. Phys. 73 015001
[34] Pu J C, Li J, Chen Y 2021 Nonlinear Dyn. 105 1723
[35] Pu J C, Chen Y 2022 Chaos, Solitons Fractals 160 112182
[36] Lin S N, Chen Y 2022 J. Comput. Phys. 41 898
[37] Ding Y C, Ban Y, Martín J, Solano E, Casanova J, Chen X 2021 Phys. Rev. A 103 L040401
[38] Norambuena A, Mattheakis M, González F, Coto R 2024, Phys. Rev. Lett 132 010801
Metrics
- Abstract views: 81
- PDF Downloads: 4
- Cited By: 0