-
Cu/HfOx/Pt and Cu/HfOx-ZnO/Pt resistance random access memory (RRAM) devices are prepared by magnetron sputtering. The results show that the Cu/HfOx/Pt device has the stable bipolar resistive switching characteristics, good retention (as long as 104 s), and a switching ratio greater than 103. The current conduction mechanism of HfOx device is ohmic conduction at low resistance, while space charge limited current (SCLC) mechanism dominates at high resistance, and the conductive filament is composed of oxygen vacancies. Owing to the low content and random distribution of oxygen defects in the HfOx film, the endurance and uniformity of the device are poor. Compared with HfOx device, HfOx-ZnO device exhibits lower operating voltage and better uniformity and stability. The main reason is that ZnO material has smaller formation energy of oxygen vacancy, which can produce more oxygen defects under electric field to participate in the resistive switching behavior of the device, thereby reducing the operating voltage and improving the uniformity of the device. In addition, owing to the existence of the interface between HfOx and ZnO film, the random distribution of oxygen defects is inhibited, that is, the random fracture and formation of conductive filament are inhibited, which is beneficial to improving the uniformity of the device. In addition, the resistive switching behaviors of Cu/HfOx/Pt and Cu/HfOx-ZnO/Pt RRAM devices under different intensities of 255 nm ultraviolet illumination are studied. For Cu/HfOx/Pt device, the light of 255 nm wavelength shows little effect on its resistive switching characteristics. For the Cu/HfOx-ZnO/Pt RRAM device, the operating voltage and stability of the device can be improved by increasing the light intensity. Although the switching ratio of the device decreases with the increase of light intensity, the device can exhibit multiple resistance states by adjusting different light intensities to achieve multi-level storage. Finally, the analysis of the I-V curves of the devices indicates that the two types of devices show similar resistive switching mechanisms under the illumination of light or no light, which can be explained by the resistive switching mechanism of oxygen vacancy conductive filament. Therefore, a physical model based on the oxygen vacancy conductive filament is established to explain the resistive switching behavior of the device in this paper.
-
Keywords:
- resistance random access memory /
- oxygen vacancies /
- photoelectric modulation /
- multilevel memory
[1] Guo T, Elshekh H, Yu Z, Yu B, Wang D, Kadhim M S, Chen Y Z, Hou W T, Sun B 2019 Mater. Today Commun. 20 100540Google Scholar
[2] Yoo S J, Agbenyeke R E, Choi H, Jeon K, Ryu J J, Eom T, Park B K, Chung T M, Jeong D S, Song W 2022 Appl. Surf. Sci. 577 151936Google Scholar
[3] Killedar S T, Ahir N A, Morankar P J, Tiwari A P, Kim D K 2020 Opt. Mater. 109 110333Google Scholar
[4] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文 2021 70 197301Google Scholar
Gong S K, Zhou J, Wang Z Q, Zhu M C, Shen J, Wu Z, Chen W 2021 Acta Phys. Sin. 70 197301Google Scholar
[5] Guo T T, Huang H X, Huang X L, Wang Y, Duan L, Xu Z 2022 J. Alloys Compd. 921 166218Google Scholar
[6] More K D, Narwade V N, Halge D I, Dadge J W, Bogle K A 2020 Physica B 595 412339Google Scholar
[7] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 14 1800079Google Scholar
[8] Zhou H, Wei X D, Wei W, Ye C, Zhang R L, Zhang L, Xia Q, Huang H, Wang B 2019 Surf. Coat. Tech. 359 150Google Scholar
[9] 张娇娇, 周龙, 王洪强, 董广志, 樊慧庆 2023 铸造技术 44 23Google Scholar
Zhang J J, Zhou L, Wang H Q, Dong G Z, Fan H Q 2023 Foundry Technology 44 23Google Scholar
[10] Wang Y H, He Z Q, Lai X B, Liu B Y, Chen Y B, Zhang L W, Wang F P 2021 J. Alloys Compd. 873 159809Google Scholar
[11] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar
[12] Zhang L, Huang H, Ye C, Chang K C, Zhang R L, Xia Q, Wei X D, Wei W, Wang W F 2018 Semicond. Sci. Tech. 33 085013Google Scholar
[13] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 65 073101Google Scholar
Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar
[14] Leydecker T, Herder M, Pavlica E, Bratina G, Hecht S, Orgiu E, Samorì P 2016 Nat Nanotechnol. 11 769Google Scholar
[15] Lee Y J, Liu K H, Peng Y, Yen M C, Tamada K 2020 Nat. Commun. 12 4460Google Scholar
[16] 曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰 2021 70 157301Google Scholar
Zeng F J, Tan Y Q, Tang X S, Zhang X M, Yin H F 2021 Acta Phys. Sin. 70 157301Google Scholar
[17] Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar
[18] Kao M C, Chen H Z, Chen K H, Shi J B, Chen K P 2020 Thin Solid Films 697 137816Google Scholar
[19] Chen Z L, Yu Y, Jin L F, Li Y F, Li Q Y, Li T T, Li J, Zhao H L, Zhang Y T, Dai H T 2021 J. Mater Chem. C 8 2178Google Scholar
[20] Singh L, Kaushik V, Rajput S, Kumar M 2021 J. Lightwave Technol. 39 5869Google Scholar
[21] Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso L E 2012 Adv. Mater. 24 2496Google Scholar
[22] Zhu X J, Lu W D 2018 Acs Nano 12 1242Google Scholar
[23] Russo P, Xiao M, Liang R, Zhou N Y 2018 Adv Funct. Mater. 28 17062301Google Scholar
[24] Xie S, Pei L, Li M Y, Zhu Y D, Cheng X Y, Ding H Q, Xiong R 2018 J. Alloys Compd. 778 141Google Scholar
[25] Xue W H, Ci W J, Xu X H, Liu G 2020 Chin. Phys. B. 29 048401Google Scholar
[26] Sharath S U, Bertaud T, Kurian J, Hildebrandt E, Walczyk C, Calka P, Zaumseil P, Sowinska M, Walczyk D, Gloskovskii A, Schroeder T, Alff L 2014 Appl. Phys. Lett. 104 063502Google Scholar
[27] Guo T T, Wang Y X, Duan L, Fan J B, Wang Z Z 2021 Vacuum 189 110224Google Scholar
[28] Bon C Y, Kim D, Lee K, Choi S, Yoo S I 2020 AIP Adv. 10 115117Google Scholar
[29] Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali R 2014 Current Appl. Phys. 14 1760Google Scholar
[30] Pereira L, Barquinha P, Fortunato E, Martins R 2005 Mater. Sci Engineer B 118 210Google Scholar
[31] Praksgh R, Sharma S, Kumar A, Kaur D 2019 Appl. Phys. Lett. 115 052108Google Scholar
[32] Wu P, Zhang J, Lu J G, Li X F, Wu C J, Sun R J, Feng L S, Jiang Q J, Lu B, Pan X H 2014 IEEE T Electron. Dev. 61 1431Google Scholar
[33] Liu P, She G W, Liao Z L, Wang Y, Wang Z Z, Shi W S, Zhang X H, Lee S T, Chen D M 2009 Appl. Phys. Lett. 94 635Google Scholar
[34] Laiho R, Poloskin D S, Stepanov Y P, Vlasenko M P, Vlasenko L S, Zakhvalinskii V S 2009 J Appl. Phys. 106 56Google Scholar
[35] Wang X J, Wang Y Y, Feng M, Wang K Y, Tian Y M 2020 Current Appl. Phys. 20 261104Google Scholar
[36] Tan T T, Du Y H, Sun Y L, Zhang H, Cao A, Zha G Q 2019 J. Mater. Sci. 30 13445Google Scholar
-
-
[1] Guo T, Elshekh H, Yu Z, Yu B, Wang D, Kadhim M S, Chen Y Z, Hou W T, Sun B 2019 Mater. Today Commun. 20 100540Google Scholar
[2] Yoo S J, Agbenyeke R E, Choi H, Jeon K, Ryu J J, Eom T, Park B K, Chung T M, Jeong D S, Song W 2022 Appl. Surf. Sci. 577 151936Google Scholar
[3] Killedar S T, Ahir N A, Morankar P J, Tiwari A P, Kim D K 2020 Opt. Mater. 109 110333Google Scholar
[4] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文 2021 70 197301Google Scholar
Gong S K, Zhou J, Wang Z Q, Zhu M C, Shen J, Wu Z, Chen W 2021 Acta Phys. Sin. 70 197301Google Scholar
[5] Guo T T, Huang H X, Huang X L, Wang Y, Duan L, Xu Z 2022 J. Alloys Compd. 921 166218Google Scholar
[6] More K D, Narwade V N, Halge D I, Dadge J W, Bogle K A 2020 Physica B 595 412339Google Scholar
[7] He H K, Yang R, Zhou W, Huang H M, Xiong J, Gan L, Zhai T Y, Guo X 2018 Small 14 1800079Google Scholar
[8] Zhou H, Wei X D, Wei W, Ye C, Zhang R L, Zhang L, Xia Q, Huang H, Wang B 2019 Surf. Coat. Tech. 359 150Google Scholar
[9] 张娇娇, 周龙, 王洪强, 董广志, 樊慧庆 2023 铸造技术 44 23Google Scholar
Zhang J J, Zhou L, Wang H Q, Dong G Z, Fan H Q 2023 Foundry Technology 44 23Google Scholar
[10] Wang Y H, He Z Q, Lai X B, Liu B Y, Chen Y B, Zhang L W, Wang F P 2021 J. Alloys Compd. 873 159809Google Scholar
[11] Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar
[12] Zhang L, Huang H, Ye C, Chang K C, Zhang R L, Xia Q, Wei X D, Wei W, Wang W F 2018 Semicond. Sci. Tech. 33 085013Google Scholar
[13] 代月花, 潘志勇, 陈真, 王菲菲, 李宁, 金波, 李晓风 2016 65 073101Google Scholar
Dai Y H, Pan Z Y, Chen Z, Wang F F, Li N, Jin B, Li X F 2016 Acta Phys. Sin. 65 073101Google Scholar
[14] Leydecker T, Herder M, Pavlica E, Bratina G, Hecht S, Orgiu E, Samorì P 2016 Nat Nanotechnol. 11 769Google Scholar
[15] Lee Y J, Liu K H, Peng Y, Yen M C, Tamada K 2020 Nat. Commun. 12 4460Google Scholar
[16] 曾凡菊, 谭永前, 唐孝生, 张小梅, 尹海峰 2021 70 157301Google Scholar
Zeng F J, Tan Y Q, Tang X S, Zhang X M, Yin H F 2021 Acta Phys. Sin. 70 157301Google Scholar
[17] Ge N N, Gong C H, Yuan X C, Zeng H Z, Wei X H 2018 RSC Adv. 8 29499Google Scholar
[18] Kao M C, Chen H Z, Chen K H, Shi J B, Chen K P 2020 Thin Solid Films 697 137816Google Scholar
[19] Chen Z L, Yu Y, Jin L F, Li Y F, Li Q Y, Li T T, Li J, Zhao H L, Zhang Y T, Dai H T 2021 J. Mater Chem. C 8 2178Google Scholar
[20] Singh L, Kaushik V, Rajput S, Kumar M 2021 J. Lightwave Technol. 39 5869Google Scholar
[21] Ungureanu M, Zazpe R, Golmar F, Stoliar P, Llopis R, Casanova F, Hueso L E 2012 Adv. Mater. 24 2496Google Scholar
[22] Zhu X J, Lu W D 2018 Acs Nano 12 1242Google Scholar
[23] Russo P, Xiao M, Liang R, Zhou N Y 2018 Adv Funct. Mater. 28 17062301Google Scholar
[24] Xie S, Pei L, Li M Y, Zhu Y D, Cheng X Y, Ding H Q, Xiong R 2018 J. Alloys Compd. 778 141Google Scholar
[25] Xue W H, Ci W J, Xu X H, Liu G 2020 Chin. Phys. B. 29 048401Google Scholar
[26] Sharath S U, Bertaud T, Kurian J, Hildebrandt E, Walczyk C, Calka P, Zaumseil P, Sowinska M, Walczyk D, Gloskovskii A, Schroeder T, Alff L 2014 Appl. Phys. Lett. 104 063502Google Scholar
[27] Guo T T, Wang Y X, Duan L, Fan J B, Wang Z Z 2021 Vacuum 189 110224Google Scholar
[28] Bon C Y, Kim D, Lee K, Choi S, Yoo S I 2020 AIP Adv. 10 115117Google Scholar
[29] Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali R 2014 Current Appl. Phys. 14 1760Google Scholar
[30] Pereira L, Barquinha P, Fortunato E, Martins R 2005 Mater. Sci Engineer B 118 210Google Scholar
[31] Praksgh R, Sharma S, Kumar A, Kaur D 2019 Appl. Phys. Lett. 115 052108Google Scholar
[32] Wu P, Zhang J, Lu J G, Li X F, Wu C J, Sun R J, Feng L S, Jiang Q J, Lu B, Pan X H 2014 IEEE T Electron. Dev. 61 1431Google Scholar
[33] Liu P, She G W, Liao Z L, Wang Y, Wang Z Z, Shi W S, Zhang X H, Lee S T, Chen D M 2009 Appl. Phys. Lett. 94 635Google Scholar
[34] Laiho R, Poloskin D S, Stepanov Y P, Vlasenko M P, Vlasenko L S, Zakhvalinskii V S 2009 J Appl. Phys. 106 56Google Scholar
[35] Wang X J, Wang Y Y, Feng M, Wang K Y, Tian Y M 2020 Current Appl. Phys. 20 261104Google Scholar
[36] Tan T T, Du Y H, Sun Y L, Zhang H, Cao A, Zha G Q 2019 J. Mater. Sci. 30 13445Google Scholar
Catalog
Metrics
- Abstract views: 2446
- PDF Downloads: 69
- Cited By: 0