-
Quantum spin liquid is an exotic state without magnetic order down to zero-temperature due to spin frustration, which is closely related to high temperature superconductivity. Therefore, an important issue arises whether the quantum spin liquid can be adjusted into a superconductor, even high-Tc superconductor, by using pressure or chemical doping. Rear-earth chalcogenides NaYbCh2 (Ch = O, S, Se), consisting of planar triangular lattice, exhibit no long-range magnetic order down to the lowest measured temperatures in specific heat, nuclear magnetic resonance, and neutron scattering, and are considered as a quantum spin liquid candidate. Here we investigate the electrical transport properties of NaYbCh2 (Ch = O, S, Se) under high pressures. For NaYbSe2, zero-resistance behavior is observed at 26.9 GPa, showing that the superconductivity comes into being. The superconducting transition temperature (Tc) is around 5.6 K at 26.9 GPa and robust against pressure till 45 GPa. The phase diagram of Tc versus pressure for NaYbSe2 is constructed. For NaYbS2, the room temperature resistance decreases from the order of 1011 Ω at 10 GPa to 10 Ω at 67 GPa. However, neither superconductivity nor insulator-metal transition is observed. Additionally, the NaYbO2 keeps insulating and the resistance is too large to be detected in a pressure range of 0–60 GPa.
-
Keywords:
- quantum spin liquid /
- high pressure /
- electrical transport
[1] Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar
[2] Anderson P W 1987 Science 235 1196Google Scholar
[3] Anderson P W, Baskaran G, Zou Z, Hsu T 1987 Phys. Rev. Lett. 58 2790Google Scholar
[4] Savary L, Balents L 2017 Rep. Prog. Phys. 80 016502Google Scholar
[5] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003Google Scholar
[6] Balents L 2010 Nature 464 199Google Scholar
[7] Li Y, Liao H Zhang Z, Li S, Jin F, Liang L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z, Zhang Q 2015 Sci. Rep. 5 16419Google Scholar
[8] Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2003 Phys. Rev. Lett. 91 107001Google Scholar
[9] Norman M R 2016 Rev. Mod. Phys. 88 041002Google Scholar
[10] Banerjee A, Briges C A, Yan J Q, et al. 2016 Nat. Mater. 15 733Google Scholar
[11] Zhong R, Gao T, Ong N P, Cava R J 2020 Sci. Adv. 6 eaay6953Google Scholar
[12] 郭静, 孙力玲 2015 64 217406Google Scholar
Guo J, Sun L L 2015 Acta Phys. Sin. 64 217406Google Scholar
[13] Qi Y, Sachdev S 2008 Phys. Rev. B 77 165112Google Scholar
[14] Powell B J, McKenzie R H 2011 Rep. Prog. Phys. 74 056501Google Scholar
[15] Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K, Saito G 2005 Phys. Rev. Lett. 95 177001Google Scholar
[16] Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, Yoshida Y, Saito G 2016 Phys. Rev. Lett. 117 107203Google Scholar
[17] Jin C, Wang Y, Jin M, Jiang Z, Jiang D, Li J, Nakamoto Y, Shimizu K, Zhu J 2022 Phys. Rev. B 105 144402Google Scholar
[18] Kozlenko D P, Kusmartseva A F, Lukin E V, Keen D A, Marshall W G, de Vries M A, Kamenev K V 2012 Phys. Rev. Lett. 108 187207Google Scholar
[19] Kelly Z A, Gallagher M J, McQueen T M 2016 Phys. Rev. X 6 041007Google Scholar
[20] Xi X, Bo X, Xu X S, Kong P P, Liu Z, Hong X G, Jin C Q, Cao G, Wan X, Carr G L 2018 Phys. Rev. B 98 125117Google Scholar
[21] Layek S, Mehlawat K, Levy D, Greenberg E, Pasternak M P, Itié J P, Singh Y, Rozenberg G K 2020 Phys. Rev. B 102 085156Google Scholar
[22] Wang Z, Guo J, Tafti F F, et al. 2018 Phys. Rev. B 97 245149Google Scholar
[23] Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G, Zhang Q 2018 Chin. Phys. Lett. 35 117501Google Scholar
[24] Baenitz M, Schlender Ph, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S, Doert Th 2018 Phys. Rev. B 98 220409Google Scholar
[25] Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Guo Y, Lu X, Dai P 2021 Phys. Rev. X 11 021044Google Scholar
[26] Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J, Zhang Q 2021 Phys. Rev. B 103 035144Google Scholar
[27] Bordelon M, Liu C, Posthuma L, Sarte P M, Butch N P, Pajerowski D M, Banerjee A, Balents L, Wilson S D 2020 Phys. Rev. B 101 224427Google Scholar
[28] Bordelon M M, Kenney E, Liu C, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N P, Brown C, Graf M J, Balents L, Wilson S D 2019 Nat. Phys. 15 1058Google Scholar
[29] Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, Jin C Q 2020 Chin. Phys. Lett. 37 097404Google Scholar
[30] Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X, Zhang Q 2020 arXiv: 2003.11479v1
[31] Schleid T, Lissner F 1993 Eur. J. Sol. State Inorg. Chem. 30 829
[32] Gray A K, Martin B R, Dorhout P K 2003 Z. Kristallor.-New Cryst. Struct. 218 19
[33] Akahama Y, Kobayashi M, Kawamura H 1992 Solid State Commun. 84 803Google Scholar
[34] Yang P T, Liu Z Y, Chen K Y, Liu X L, Zhang X, Yu Z H, Zhang H, Sun J P, Uwatoko Y, Dong X L, Jiang K, Hu J P, Guo Y F, Wang B S, Cheng J G 2022 Nat. Commun. 13 2975Google Scholar
-
图 2 (a) 不同压力下NaYbSe2电阻随温度的依赖关系, 其中17.9 GPa的R(T)曲线的值为
$R\times {1}/{4}$ ; (b) 26.9—45.4 GPa压力范围内, NaYbSe2在低温下的超导转变及其Tconset和TczeroFigure 2. (a) Temperature dependence of the resistance for NaYbSe2 under various pressures. The resistance values at 17.9 GPa are
$R\times {1}/{4}$ . (b) Superconducting transition of NaYbSe2 at low temperature between 26.9 and 45.4 GPa. The arrows indicate the Tconset and Tczero. -
[1] Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar
[2] Anderson P W 1987 Science 235 1196Google Scholar
[3] Anderson P W, Baskaran G, Zou Z, Hsu T 1987 Phys. Rev. Lett. 58 2790Google Scholar
[4] Savary L, Balents L 2017 Rep. Prog. Phys. 80 016502Google Scholar
[5] Zhou Y, Kanoda K, Ng T K 2017 Rev. Mod. Phys. 89 025003Google Scholar
[6] Balents L 2010 Nature 464 199Google Scholar
[7] Li Y, Liao H Zhang Z, Li S, Jin F, Liang L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z, Zhang Q 2015 Sci. Rep. 5 16419Google Scholar
[8] Shimizu Y, Miyagawa K, Kanoda K, Maesato M, Saito G 2003 Phys. Rev. Lett. 91 107001Google Scholar
[9] Norman M R 2016 Rev. Mod. Phys. 88 041002Google Scholar
[10] Banerjee A, Briges C A, Yan J Q, et al. 2016 Nat. Mater. 15 733Google Scholar
[11] Zhong R, Gao T, Ong N P, Cava R J 2020 Sci. Adv. 6 eaay6953Google Scholar
[12] 郭静, 孙力玲 2015 64 217406Google Scholar
Guo J, Sun L L 2015 Acta Phys. Sin. 64 217406Google Scholar
[13] Qi Y, Sachdev S 2008 Phys. Rev. B 77 165112Google Scholar
[14] Powell B J, McKenzie R H 2011 Rep. Prog. Phys. 74 056501Google Scholar
[15] Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K, Saito G 2005 Phys. Rev. Lett. 95 177001Google Scholar
[16] Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, Yoshida Y, Saito G 2016 Phys. Rev. Lett. 117 107203Google Scholar
[17] Jin C, Wang Y, Jin M, Jiang Z, Jiang D, Li J, Nakamoto Y, Shimizu K, Zhu J 2022 Phys. Rev. B 105 144402Google Scholar
[18] Kozlenko D P, Kusmartseva A F, Lukin E V, Keen D A, Marshall W G, de Vries M A, Kamenev K V 2012 Phys. Rev. Lett. 108 187207Google Scholar
[19] Kelly Z A, Gallagher M J, McQueen T M 2016 Phys. Rev. X 6 041007Google Scholar
[20] Xi X, Bo X, Xu X S, Kong P P, Liu Z, Hong X G, Jin C Q, Cao G, Wan X, Carr G L 2018 Phys. Rev. B 98 125117Google Scholar
[21] Layek S, Mehlawat K, Levy D, Greenberg E, Pasternak M P, Itié J P, Singh Y, Rozenberg G K 2020 Phys. Rev. B 102 085156Google Scholar
[22] Wang Z, Guo J, Tafti F F, et al. 2018 Phys. Rev. B 97 245149Google Scholar
[23] Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G, Zhang Q 2018 Chin. Phys. Lett. 35 117501Google Scholar
[24] Baenitz M, Schlender Ph, Sichelschmidt J, Onykiienko Y A, Zangeneh Z, Ranjith K M, Sarkar R, Hozoi L, Walker H C, Orain J C, Yasuoka H, van den Brink J, Klauss H H, Inosov D S, Doert Th 2018 Phys. Rev. B 98 220409Google Scholar
[25] Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Guo Y, Lu X, Dai P 2021 Phys. Rev. X 11 021044Google Scholar
[26] Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J, Zhang Q 2021 Phys. Rev. B 103 035144Google Scholar
[27] Bordelon M, Liu C, Posthuma L, Sarte P M, Butch N P, Pajerowski D M, Banerjee A, Balents L, Wilson S D 2020 Phys. Rev. B 101 224427Google Scholar
[28] Bordelon M M, Kenney E, Liu C, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N P, Brown C, Graf M J, Balents L, Wilson S D 2019 Nat. Phys. 15 1058Google Scholar
[29] Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, Jin C Q 2020 Chin. Phys. Lett. 37 097404Google Scholar
[30] Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X, Zhang Q 2020 arXiv: 2003.11479v1
[31] Schleid T, Lissner F 1993 Eur. J. Sol. State Inorg. Chem. 30 829
[32] Gray A K, Martin B R, Dorhout P K 2003 Z. Kristallor.-New Cryst. Struct. 218 19
[33] Akahama Y, Kobayashi M, Kawamura H 1992 Solid State Commun. 84 803Google Scholar
[34] Yang P T, Liu Z Y, Chen K Y, Liu X L, Zhang X, Yu Z H, Zhang H, Sun J P, Uwatoko Y, Dong X L, Jiang K, Hu J P, Guo Y F, Wang B S, Cheng J G 2022 Nat. Commun. 13 2975Google Scholar
Catalog
Metrics
- Abstract views: 4019
- PDF Downloads: 114
- Cited By: 0