搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压下TiO2纳米线晶粒和晶界性质及电输运行为

王月 邵渤淮 陈双龙 王春杰 高春晓

引用本文:
Citation:

高压下TiO2纳米线晶粒和晶界性质及电输运行为

王月, 邵渤淮, 陈双龙, 王春杰, 高春晓

Grain and grain boundary behaviors and electrical transport properties of TiO2 nanowires under high pressure

Wang Yue, Shao Bo-Huai, Chen Shuang-Long, Wang Chun-Jie, Gao Chun-Xiao
PDF
HTML
导出引用
  • 采用水热合成法制备了锐钛矿相TiO2纳米线, 并通过原位高压阻抗谱测量技术研究了TiO2纳米线晶粒和晶界性质及电输运行为随压力的变化关系. 研究结果表明: 在0—34.0 GPa压力区间, 锐钛矿TiO2纳米线的传导机制为电子电导. TiO2纳米线晶粒和晶界电阻以及弛豫频率在8.2—11.2 GPa压力区间均出现了不连续变化行为, 此压力区域对应着由锐钛矿相到斜锆石相的结构转变, 并且相变从晶粒表面逐渐延伸到晶粒内部. 晶粒激活能和晶界激活能均随压力的增加而减小, 说明压力对样品电导率的贡献为正. 在所测压力范围内, 空间电荷势始终为正值, 表明在空间电荷区阴离子缺陷更易形成, 氧缺陷是TiO2纳米线相变的主要诱因.
    In this work, anatase Titanium dioxide (TiO2) nanowires are synthesized by the hydrothermal method, and its grain and grain boundary behaviors and electrical properties are investigated by alternating current (AC) impedance method under high pressure (up to 34.0 GPa). The relationship between the frequency dependence of impedance Z'' and pressure indicate that the conduction mechanism of anatase phase TiO2 nanowires in the test pressure range is electronic conductivity. It should be noted that the characteristic peaks of Z'' move toward high frequency region with pressure increasing, demonstrating that the effect of grain interior on impedance becomes apparent. Additionally, the overall variation trends of grain and grain boundary resistance go downward with pressure increasing, and the descent rate of grain boundary is larger than those of grain before and after phase transition. However, in a range of phase transition (8.2–11.2 GPa, from anatase to baddeleyite phase), grain boundary resistance shows a discontinuously change (increases to 11.2 GPa and then decreases). Based on the different variation trends of grain and grain boundary resistance, it becomes obvious that the phase transition from anatase to baddeleyite phase first occurs at the surface of grain, and then extends to the interior of grain gradually. Also, as an intrinsic characteristic, the relaxation frequency is independent of the geometrical parameters. The pressure dependence of activation energy is obtained by fitting the pressure dependence of relaxation frequency. The activation energy of grain and grain boundary decrease with pressure increasing, implying that the contribution of pressure on the conductivity of sample is positive. Furthermore, the space charge potential for the whole test pressure range is positive, which is determined by the relationship between pressure and relaxation frequency. This fact illustrates that the anion defects are easily formed in the space charge region, and the oxygen defects are the main inducement for TiO2 phase transformation.
      通信作者: 王春杰, cjwang@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 12004050)和辽宁省教育厅项目(批准号: LJ2019013, LQ2020005) 资助的课题.
      Corresponding author: Wang Chun-Jie, cjwang@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12004050) and the Research Foundation of the Education Department of Liaoning Province, China (Grant Nos. LJ2019013, LQ2020005).
    [1]

    Li Q J, Liu B B 2016 Chin. Phys. B 25 076107Google Scholar

    [2]

    Dong Z H, Song Y 2015 Can. J. Chem. 93 165Google Scholar

    [3]

    Swamy V, Kuznetsov A Y, Dubrovinsky L S, Kurnosov A, Prakapenka V B 2009 Phys. Rev. Lett. 103 075505Google Scholar

    [4]

    Machon D, Daniel M, Pischedda V, Daniele S, Bouvier P, LeFloch S 2010 Phys. Rev. B 82 140102Google Scholar

    [5]

    Machon D, Daniel M, Bouvier P, Daniele S, Floch S L, Melinon P, Pischedda V 2011 J. Phys. Chem. C 115 22286Google Scholar

    [6]

    Li Q, Cheng B, Yang X, Liu R, Zou B 2013 J. Phys. Chem. C 117 8516Google Scholar

    [7]

    Wang Z, Saxena S K 2001 Solid State Commun. 118 75Google Scholar

    [8]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Mcmillan P F, Prakapenka V B, Shen G, Muddle B C 2006 Phys. Rev. Lett. 96 135702Google Scholar

    [9]

    Hearne G R, Zhao J, Dawe A M, Pischedda V, Comins J D 2004 Phys. Rev. B 70 134102Google Scholar

    [10]

    Swamya V, Dubrovinsky L S, Dubrovinskaia N A, Simionovici A S, Drakopoulos M, Dmitriev V, Weber H P 2003 Solid State Commun. 125 111Google Scholar

    [11]

    Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Langenhorst F, Simionovici A, Drakopoulos M, Dmitriev V, Weber H P 2005 Solid State Commun. 134 541Google Scholar

    [12]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Olsen J S, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [13]

    Haines J, Léger J M 1993 Physica B 192 233Google Scholar

    [14]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [15]

    Li Q J, Liu B B, Wang L, Li D M, Liu R, Zou B, Cui T, Zou G T, Meng Y, Mao H K, Liu Z X, Liu J, Li J X 2010 J. Phys. Chem. Lett. 1 309Google Scholar

    [16]

    Li Q J, Liu R, Cheng B Y, Wang L, Yao M G, Li D M 2012 Mater. Res. Bull. 47 1396Google Scholar

    [17]

    Park S, Jang J, Cheon J, Lee H H, Lee D R, Lee Y 2008 J. Phys. Chem. C 112 9627Google Scholar

    [18]

    Li Q, Cheng B, Tian B, Liu R, Liu B, Wang F, Chen Z, Zou B, Cui T, Liu B 2014 RSC Adv. 4 12873Google Scholar

    [19]

    Dong Z, Xiao F, Zhao A, Liu L, Sham T K, Song Y 2016 RSC Adv. 6 76142Google Scholar

    [20]

    Li Q, Ran L, Wang T, Ke X, Jing L 2015 AIP Adv. 5 097128Google Scholar

    [21]

    Zhang Y, Wang Q, Zhang J, Wu X, Ma Y 2017 Nanotechnology 28 145705Google Scholar

    [22]

    Liu B, Nakata K, Liu S, Sakai M, Ochia T, Murakami T, Takagi K, Fujishima A 2012 J. Phys. Chem. C 116 7471Google Scholar

    [23]

    Tokudome H, Miyauchi M 2004 Chem. Commun. 8 958Google Scholar

    [24]

    Wu J M, Shi H C, Wu W T 2006 Nanotechnology 17 105Google Scholar

    [25]

    Rendón-Rivera A, Toledo-Antonio J A, Cortés-Jácome M A, Angeles-Chávez C 2011 Catal. Today 166 18Google Scholar

    [26]

    Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J 2013 Nature 495 215Google Scholar

    [27]

    韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤 2021 70 038103Google Scholar

    Han D Y, Gu Y, Hu T Z, Dong W, Ni Y X 2021 Acta Phys. Sin. 70 038103Google Scholar

    [28]

    王春杰, 王月, 高春晓 2020 69 147202Google Scholar

    Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar

    [29]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版 1) (北京: 科学出版社) 第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [30]

    Watanabe T, Murakami T, Karashima S 1978 Scr. Metall. 12 361Google Scholar

    [31]

    Dickey L E C 2004 Acta Mater. 52 809Google Scholar

    [32]

    Zhang H, Zhang G, Wang J, Wang Q, Liu C 2021 J. Alloys Compd. 857 157482Google Scholar

    [33]

    Wang Q, Wang X, Li J, Qin T, Sang D, Liu J, Ke F, Wang X, Li Y, Liu C 2021 J. Mater. Chem. C 9 4764Google Scholar

    [34]

    Wang J, Zhang G, Liu H, Wang Q, Shen W, Yan Y, Liu C, Han Y, Gao C 2017 Appl. Phys. Lett. 111 031907Google Scholar

    [35]

    Gerbig O, Merkle R, Maier J 2013 Adv. Mater. 25 3129Google Scholar

    [36]

    Ali H, Karim S, Rafiq M A, Maaz K, Ahmad M 2014 J. Alloys Compd. 612 64Google Scholar

    [37]

    Abouzari M, Berkemeier F, Schmitz G, Wilmer D 2009 Solid State Ionics 180 922Google Scholar

    [38]

    Lü X, Yang W, Quan Z, Lin T, Bai L, Wang L, Huang F, Zhao Y 2014 J. Am. Chem. Soc. 136 419Google Scholar

    [39]

    Wang Q, Li S, Peng F, Lei L, He D 2017 J. Appl. Phys. 121 215109Google Scholar

    [40]

    Bai F, Bian K, Huang X, Wang Z, Fan H 2019 Chem. Rev. 119 7673Google Scholar

    [41]

    Wang Q, He D, Peng F, Lei L, Xiong L, Wang P, Liu J 2014 High Pressure Res. 34 259Google Scholar

    [42]

    Goncharov A F 1992 High Pressure Res. 8 607Google Scholar

    [43]

    Popescu C, Sans J A, Errandonea D, Segura A, Sapia F 2014 Inorg. Chem. 53 11598Google Scholar

    [44]

    Dutta A, Sinha T P, Shannigrahi S 2007 Phys. Rev. B 76 155113Google Scholar

    [45]

    Buelbuel M M, Zeyrek S 2006 Microelectron. Eng. 83 2522Google Scholar

    [46]

    Tolbert S H, Alivisatos A P 1995 J. Chem. Phys. 102 4642Google Scholar

    [47]

    Brus L E, Harkless J A W, Stillinger F H 1996 J. Am. Chem. Soc. 118 4834Google Scholar

    [48]

    Macdonald J R 1987 Impedance Spectrum (New York: Wiley) pp13–14, 205

    [49]

    Fleig J 2002 Solid State Ionics 150 181Google Scholar

    [50]

    Henisch H K 1984 Semiconductor Contacts (Oxford: Clarendon Press) p85

    [51]

    Guo X 1995 Solid State Ionics 81 235Google Scholar

  • 图 1  经过650℃退火后的TiO2纳米线 (a) XRD谱图; (b) SEM图片

    Fig. 1.  TiO2 nanowires after being annealing at 650 ℃: (a) XRD pattern; (b) SEM image.

    图 2  TiO2纳米线在不同压力下的阻抗谱 (a) 5.4 GPa; (b) 8.5 GPa; (c) 18.1 GPa; (d) 34.0 GPa

    Fig. 2.  Impedance spectra of TiO2 nanowires at different pressures: (a) 5.4 GPa; (b) 8.5 GPa; (c) 18.1 GPa; (d) 34.0 GPa.

    图 3  TiO2纳米线阻抗虚部Z" 随频率的演化关系 (a)在6.0—9.3 GPa范围内; (b) 在13.3—32.6 GPa范围内

    Fig. 3.  Frequency dependence of impedance Z" plots of TiO2 nanowires at different pressures: (a) In the range of 6.0–9.3 GPa; (b) in the range of 13.3–32.6 GPa.

    图 4  不同压力下 TiO2纳米线的Nyquist图 (a) 5.4 GPa; (b) 23.0 GPa

    Fig. 4.  Nyquist impedance spectra of TiO2 nanowires at different pressures: (a) 5.4 GPa; (b) 23.0 GPa.

    图 5  TiO2纳米线晶粒和晶界电阻随压力的变化关系

    Fig. 5.  Pressure dependence of Rg and Rgb of TiO2 nanowires

    图 6  TiO2纳米线晶粒和晶界驰豫频率随压力的变化关系

    Fig. 6.  Variations of fg and fgb of TiO2 nanowires as a function of pressure.

    图 7  TiO2纳米线晶界空间电荷势随压力的变化

    Fig. 7.  Pressure dependence of space charge potential of TiO2 nanowires.

    表 1  TiO2纳米线在不同压力区间的dHg/dP和dHgb/dP

    Table 1.  Fitting parameters from pressure dependence of active energy of grain and grain boundary of TiO2 nanowires.

    Pressure region/GPadH/dP/(meV·GPa–1)
    GrainGrain boundary
    1.6—8.2–0.578–0.433
    9.5—34.0–0.084–0.069
    下载: 导出CSV
    Baidu
  • [1]

    Li Q J, Liu B B 2016 Chin. Phys. B 25 076107Google Scholar

    [2]

    Dong Z H, Song Y 2015 Can. J. Chem. 93 165Google Scholar

    [3]

    Swamy V, Kuznetsov A Y, Dubrovinsky L S, Kurnosov A, Prakapenka V B 2009 Phys. Rev. Lett. 103 075505Google Scholar

    [4]

    Machon D, Daniel M, Pischedda V, Daniele S, Bouvier P, LeFloch S 2010 Phys. Rev. B 82 140102Google Scholar

    [5]

    Machon D, Daniel M, Bouvier P, Daniele S, Floch S L, Melinon P, Pischedda V 2011 J. Phys. Chem. C 115 22286Google Scholar

    [6]

    Li Q, Cheng B, Yang X, Liu R, Zou B 2013 J. Phys. Chem. C 117 8516Google Scholar

    [7]

    Wang Z, Saxena S K 2001 Solid State Commun. 118 75Google Scholar

    [8]

    Swamy V, Kuznetsov A, Dubrovinsky L S, Mcmillan P F, Prakapenka V B, Shen G, Muddle B C 2006 Phys. Rev. Lett. 96 135702Google Scholar

    [9]

    Hearne G R, Zhao J, Dawe A M, Pischedda V, Comins J D 2004 Phys. Rev. B 70 134102Google Scholar

    [10]

    Swamya V, Dubrovinsky L S, Dubrovinskaia N A, Simionovici A S, Drakopoulos M, Dmitriev V, Weber H P 2003 Solid State Commun. 125 111Google Scholar

    [11]

    Swamy V, Dubrovinsky L S, Dubrovinskaia N A, Langenhorst F, Simionovici A, Drakopoulos M, Dmitriev V, Weber H P 2005 Solid State Commun. 134 541Google Scholar

    [12]

    Arlt T, Bermejo M, Blanco M A, Gerward L, Jiang J Z, Olsen J S, Recio J M 2000 Phys. Rev. B 61 14414Google Scholar

    [13]

    Haines J, Léger J M 1993 Physica B 192 233Google Scholar

    [14]

    Lagarec K, Desgreniers S 1995 Solid State Commun. 94 519Google Scholar

    [15]

    Li Q J, Liu B B, Wang L, Li D M, Liu R, Zou B, Cui T, Zou G T, Meng Y, Mao H K, Liu Z X, Liu J, Li J X 2010 J. Phys. Chem. Lett. 1 309Google Scholar

    [16]

    Li Q J, Liu R, Cheng B Y, Wang L, Yao M G, Li D M 2012 Mater. Res. Bull. 47 1396Google Scholar

    [17]

    Park S, Jang J, Cheon J, Lee H H, Lee D R, Lee Y 2008 J. Phys. Chem. C 112 9627Google Scholar

    [18]

    Li Q, Cheng B, Tian B, Liu R, Liu B, Wang F, Chen Z, Zou B, Cui T, Liu B 2014 RSC Adv. 4 12873Google Scholar

    [19]

    Dong Z, Xiao F, Zhao A, Liu L, Sham T K, Song Y 2016 RSC Adv. 6 76142Google Scholar

    [20]

    Li Q, Ran L, Wang T, Ke X, Jing L 2015 AIP Adv. 5 097128Google Scholar

    [21]

    Zhang Y, Wang Q, Zhang J, Wu X, Ma Y 2017 Nanotechnology 28 145705Google Scholar

    [22]

    Liu B, Nakata K, Liu S, Sakai M, Ochia T, Murakami T, Takagi K, Fujishima A 2012 J. Phys. Chem. C 116 7471Google Scholar

    [23]

    Tokudome H, Miyauchi M 2004 Chem. Commun. 8 958Google Scholar

    [24]

    Wu J M, Shi H C, Wu W T 2006 Nanotechnology 17 105Google Scholar

    [25]

    Rendón-Rivera A, Toledo-Antonio J A, Cortés-Jácome M A, Angeles-Chávez C 2011 Catal. Today 166 18Google Scholar

    [26]

    Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A, Snaith H J 2013 Nature 495 215Google Scholar

    [27]

    韩迪仪, 顾阳, 胡涛政, 董雯, 倪亚贤 2021 70 038103Google Scholar

    Han D Y, Gu Y, Hu T Z, Dong W, Ni Y X 2021 Acta Phys. Sin. 70 038103Google Scholar

    [28]

    王春杰, 王月, 高春晓 2020 69 147202Google Scholar

    Wang C J, Wang Y, Gao C X 2020 Acta Phys. Sin. 69 147202Google Scholar

    [29]

    曹楚南, 张鉴清 2002 电化学阻抗谱导论 (典藏版 1) (北京: 科学出版社) 第21页

    Cao C N, Zhang J Q 2002 Introduction to Electrochemical Impedance Spectroscopy (Vol. 1) (Beijing: Science Press) p21 (in Chinese)

    [30]

    Watanabe T, Murakami T, Karashima S 1978 Scr. Metall. 12 361Google Scholar

    [31]

    Dickey L E C 2004 Acta Mater. 52 809Google Scholar

    [32]

    Zhang H, Zhang G, Wang J, Wang Q, Liu C 2021 J. Alloys Compd. 857 157482Google Scholar

    [33]

    Wang Q, Wang X, Li J, Qin T, Sang D, Liu J, Ke F, Wang X, Li Y, Liu C 2021 J. Mater. Chem. C 9 4764Google Scholar

    [34]

    Wang J, Zhang G, Liu H, Wang Q, Shen W, Yan Y, Liu C, Han Y, Gao C 2017 Appl. Phys. Lett. 111 031907Google Scholar

    [35]

    Gerbig O, Merkle R, Maier J 2013 Adv. Mater. 25 3129Google Scholar

    [36]

    Ali H, Karim S, Rafiq M A, Maaz K, Ahmad M 2014 J. Alloys Compd. 612 64Google Scholar

    [37]

    Abouzari M, Berkemeier F, Schmitz G, Wilmer D 2009 Solid State Ionics 180 922Google Scholar

    [38]

    Lü X, Yang W, Quan Z, Lin T, Bai L, Wang L, Huang F, Zhao Y 2014 J. Am. Chem. Soc. 136 419Google Scholar

    [39]

    Wang Q, Li S, Peng F, Lei L, He D 2017 J. Appl. Phys. 121 215109Google Scholar

    [40]

    Bai F, Bian K, Huang X, Wang Z, Fan H 2019 Chem. Rev. 119 7673Google Scholar

    [41]

    Wang Q, He D, Peng F, Lei L, Xiong L, Wang P, Liu J 2014 High Pressure Res. 34 259Google Scholar

    [42]

    Goncharov A F 1992 High Pressure Res. 8 607Google Scholar

    [43]

    Popescu C, Sans J A, Errandonea D, Segura A, Sapia F 2014 Inorg. Chem. 53 11598Google Scholar

    [44]

    Dutta A, Sinha T P, Shannigrahi S 2007 Phys. Rev. B 76 155113Google Scholar

    [45]

    Buelbuel M M, Zeyrek S 2006 Microelectron. Eng. 83 2522Google Scholar

    [46]

    Tolbert S H, Alivisatos A P 1995 J. Chem. Phys. 102 4642Google Scholar

    [47]

    Brus L E, Harkless J A W, Stillinger F H 1996 J. Am. Chem. Soc. 118 4834Google Scholar

    [48]

    Macdonald J R 1987 Impedance Spectrum (New York: Wiley) pp13–14, 205

    [49]

    Fleig J 2002 Solid State Ionics 150 181Google Scholar

    [50]

    Henisch H K 1984 Semiconductor Contacts (Oxford: Clarendon Press) p85

    [51]

    Guo X 1995 Solid State Ionics 81 235Google Scholar

  • [1] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量.  , 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [2] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究.  , 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [3] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质.  , 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [4] 王春杰, 王月, 高春晓. 高压下纳米晶ZnS晶粒和晶界性质及相变机理.  , 2020, 69(14): 147202. doi: 10.7498/aps.69.20200240
    [5] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质.  , 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [6] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究.  , 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [7] 刘博, 王煊军, 卜晓宇. 高压下NH4ClO4结构、电子及弹性性质的第一性原理研究.  , 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [8] 晏潜, 陆翠敏, 冯电稳, 杨巍巍, 赵捷, 刘庆锁, 马永昌. K0.8Fe2Se2晶体c轴向载流子输运特性的研究.  , 2014, 63(3): 037401. doi: 10.7498/aps.63.037401
    [9] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算.  , 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [10] 张品亮, 龚自正, 姬广富, 刘崧. α-Ti2Zr高压物性的第一性原理计算研究.  , 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [11] 吴迪, 赵纪军, 田华. Fe2+取代对MgSiO3钙钛矿高温高压物性的影响.  , 2013, 62(4): 049101. doi: 10.7498/aps.62.049101
    [12] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究.  , 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [13] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析.  , 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [14] 陈中钧. 高压下MgS的弹性性质、电子结构和光学性质的第一性原理研究.  , 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [15] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究.  , 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [16] 黄传禄, 丁耀根, 王勇. 双间隙耦合腔电子电导的理论与计算仿真.  , 2011, 60(12): 128401. doi: 10.7498/aps.60.128401
    [17] 陈东阁, 唐新桂, 贾振华, 伍君博, 熊惠芳. Al2O3-Y2O3-ZrO2三相复合陶瓷的介电谱研究.  , 2011, 60(12): 127701. doi: 10.7498/aps.60.127701
    [18] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究.  , 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [19] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能.  , 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [20] 蔡建臻, 朱宏伟, 吴德海, 刘 峰, 吕 力. 单壁碳纳米管微分电导在高压和强磁场下的实验研究.  , 2006, 55(12): 6585-6588. doi: 10.7498/aps.55.6585
计量
  • 文章访问数:  4116
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2022-01-11
  • 上网日期:  2022-02-02
  • 刊出日期:  2022-05-05

/

返回文章
返回
Baidu
map