-
设计一个两端线型双量子点分子Aharonov-Bohm (A-B)干涉仪. 采用非平衡格林函数技术, 理论研究无含时外场作用下的体系电导和引入含时外场作用下的体系平均电流. 在不考虑含时外场时, 调节点间耦合强度或磁通可以诱导电导共振峰劈裂. 控制穿过A-B干涉仪磁通的有无, 实现了共振峰电导数值在0与1之间的数字转换, 为制造量子开关提供了一个新的物理方案. 同时借助磁通和Rashba自旋轨道相互作用, 获得了自旋过滤. 当体系引入含时外场时, 平均电流曲线展示了旁带效应. 改变含时外场的振幅, 实现了体系平均电流的大小与位置的有效控制, 而调节含时外场的频率, 则可以实现平均电流峰与谷之间的可逆转换. 通过调节磁通与Rashba自旋轨道相互作用, 与自旋相关的平均电流亦得到有效控制. 研究结果为开发利用耦合多量子点链嵌入A-B 干涉仪体系电输运性质提供了新的认知. 上述结果可望对未来的量子器件设计与量子计算发挥重要的指导作用.
-
关键词:
- 非平衡格林函数 /
- 量子点 /
- 电输运 /
- Aharonov-Bohm干涉仪
A two-terminal Aharonov-Bohm (A-B) interferometer coupled with linear di-quantum dot molecules is presented. By employing Keldysh non-equilibrium Green's function technique, the conductance without introducing time-dependent external field and the average current with applying time-dependent external field are theoretically studied. In the absence of time-dependent external field, two identical linear diquantum dot molecules embedded respectively in the two arms of A-B interferometer lead to degeneracy energy levels. The central resonance peak at εd = 0 in the conductance spectrum splits into two resonance peaks as the inter-coupling strength of di-quamtum dot increases over a threshold. In the case that the two linear di-quantum dot molecules are different, three or four resonance peaks appear in the conductance spectrum. When tuning magnetic flux ψ= π, the destructive quantum interference of electron waves in the A-B interferometer takes place. The conversion between 0 and 1 for conductance is performed by switching on/off the magnetic flux, which suggests a new physical scheme of quantum switches. The effect of Rashba spin-orbit interaction on the conductance is discussed. The functionality of spin filter is suggested through adjusting the Rashba spin-orbit coupling strength and the external magnetic flux. When time-dependent external field is applied, the notable side-band effect appears in the average current curve. A series of resonance peaks is produced, with the peak-peak separation of ħω. Two main peaks become reduced as the amplitude of time-dependent external field increases, however, the sideband peaks grow gradually. This indicates that both the magnitude and the position of average current resonance peak are controllable by adjusting the amplitude of time-dependent external field. The sideband effect remains always in the average current curve no matter how much the frequency of time-dependent external field changes. But the increase in the frequency of external field leads to the growth of two main peaks at the bonding and anti-bonding energy respectively, and the decay of the corresponding sideband peaks as well. The conversion between the current peak and valley can be realized by tuning the frequency of time-dependent field. Moreover, the dependence of A-B effect of the average current on the magnetic flux is found. As the magnetic flux is ψ≠nπ, each peak in average current curves splits into two peaks. But under the condition of ψ=2nπ, the splitting phenomenon disappears. The spin-dependent average current shows effective controllability by tuning the magnetic flux and Rashba spin-orbit coupling. The results would be useful for gaining a physical insight into electron transport in the multi-quantum-dot molecules coupled A-B interferometer and for designing the quantum devices.-
Keywords:
- nonequilibrium Green' /
- s function /
- quantum dot /
- electron transport
[1] Ladrón de Guevara M L, Claro F, Orellana P A 2003 Phys. Rev. B 67 195335
[2] Sun Q, Guo H, Wang J 2003 Phys. Rev. Lett. 90 258301
[3] Fang M, Sun L L 2008 Chin. Phys. Lett. 25 3389
[4] Chi F, Yuan X, Zheng J 2008 Nanoscale Res. Lett. 3 343
[5] Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2011 Chin. Phys. B 20 027301
[6] Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485
[7] Zhao H K, Wang J, Wang Q 2012 EPL 99 48005
[8] Gong W J, Zheng Y S, Liu Y, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934
[9] Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2426 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 57 2426]
[10] Barański J, Domański T 2012 Phys. Rev. B 85 205451
[11] He Z L, Bai J Y, Li P, L T Q 2014 Acta Phys. Sin. 63 227304 (in Chinese) [贺泽龙, 白继元, 李鹏, 吕天全 2014 63 227304]
[12] Wang Q, Xie H Q, Jiao H J, Li Z J, Nie Y H 2012 Chin. Phys. B 21 117310
[13] Chi F, Zheng J 2008 Superlattices 43 375
[14] Du S F, Sun Q F, Lin T H 2000 Commun. Theor. Phys. 33 185
[15] Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849
[16] Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302
[17] Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C, Guo G P 2013 Appl. Phys. Lett. 103 162109
[18] An X T, Mu H Y, Li Y X, Liu J J 2011 Phys. Lett. A 375 4078
[19] Sokolovshi D 1988 Phys. Rev. B 37 4201
[20] Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J, Sakaki H 1994 Phys. Rev. Lett. 73 3443
[21] Tang H Z, An X T, Wang A K, Liu J J 2014 J. Appl. Phys. 116 063708
[22] Sun Q F, Lin T H 1997 Phys. Rev. B 56 3591
[23] Chen K W, Chang C R 2008 Phys. Rev. B 78 235319
[24] Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310
[25] Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528
[26] Wingreen N S, Jauho A P, Meir Y 1993 Phys. Rev. B 48 8487
-
[1] Ladrón de Guevara M L, Claro F, Orellana P A 2003 Phys. Rev. B 67 195335
[2] Sun Q, Guo H, Wang J 2003 Phys. Rev. Lett. 90 258301
[3] Fang M, Sun L L 2008 Chin. Phys. Lett. 25 3389
[4] Chi F, Yuan X, Zheng J 2008 Nanoscale Res. Lett. 3 343
[5] Xue H J, L T Q, Zhang H C, Yin H T, Cui L, He Z L 2011 Chin. Phys. B 20 027301
[6] Zhao H K, Zhao L L 2011 Eur. Phys. J. B 79 485
[7] Zhao H K, Wang J, Wang Q 2012 EPL 99 48005
[8] Gong W J, Zheng Y S, Liu Y, Kariuki F N, L T Q 2008 Phys. Lett. A 372 2934
[9] Chen X W, Shi Z G, Chen B J, Song K H 2008 Acta Phys. Sin. 57 2426 (in Chinese) [谌雄文, 施振刚, 谌宝菊, 宋克慧 2008 57 2426]
[10] Barański J, Domański T 2012 Phys. Rev. B 85 205451
[11] He Z L, Bai J Y, Li P, L T Q 2014 Acta Phys. Sin. 63 227304 (in Chinese) [贺泽龙, 白继元, 李鹏, 吕天全 2014 63 227304]
[12] Wang Q, Xie H Q, Jiao H J, Li Z J, Nie Y H 2012 Chin. Phys. B 21 117310
[13] Chi F, Zheng J 2008 Superlattices 43 375
[14] Du S F, Sun Q F, Lin T H 2000 Commun. Theor. Phys. 33 185
[15] Zhao L L, Zhao H K, Wang J 2012 Phys. Lett. A 376 1849
[16] Yang Z C, Sun Q F, Xie X C 2014 J. Phys. Condens. Matter 26 045302
[17] Shang R N, Li H O, Cao G, Xiao M, Tu T, Jiang H W, Guo G C, Guo G P 2013 Appl. Phys. Lett. 103 162109
[18] An X T, Mu H Y, Li Y X, Liu J J 2011 Phys. Lett. A 375 4078
[19] Sokolovshi D 1988 Phys. Rev. B 37 4201
[20] Kouwenhoven L P, Jauhar S, Orenstein J, McEuen P L, Nagamune Y, Motohisa J, Sakaki H 1994 Phys. Rev. Lett. 73 3443
[21] Tang H Z, An X T, Wang A K, Liu J J 2014 J. Appl. Phys. 116 063708
[22] Sun Q F, Lin T H 1997 Phys. Rev. B 56 3591
[23] Chen K W, Chang C R 2008 Phys. Rev. B 78 235319
[24] Sun Q F, Wang J, Guo H 2005 Phys. Rev. B 71 165310
[25] Jauho A P, Wingreen N S, Meir Y 1994 Phys. Rev. B 50 5528
[26] Wingreen N S, Jauho A P, Meir Y 1993 Phys. Rev. B 48 8487
计量
- 文章访问数: 5484
- PDF下载量: 154
- 被引次数: 0