搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InSe的高压电输运性质研究

吴宝嘉 李燕 彭刚 高春晓

引用本文:
Citation:

InSe的高压电输运性质研究

吴宝嘉, 李燕, 彭刚, 高春晓

Electrical transport properties of InSe under high pressure

Wu Bao-Jia, Li Yan, Peng Gang, Gao Chun-Xiao
PDF
导出引用
  • 高压下对InSe样品进行原位电阻率和霍尔效应测量. 电阻率测量结果显示, 样品在5–6 GPa区间呈现金属特性, 在12 GPa 的压力下发生由斜六方体层状结构到立方岩盐矿的结构相变, 且具有金属特性. 霍尔效应测量结果显示, 样品在6.6 GPa由p型半导体转变成n型半导体, 电阻率随着压力的升高而逐渐下降是由于载流子浓度升高引起的.
    Electrical resistivity and Hall-effect in InSe under high pressure are accurately measured in situ. The measurement results of electrical resistivity and the temperature dependence of electrical resistivity show that InSe undergoes semiconductor-to-metal transition at 5-6 GPa and transforms from rhombohedral layered phase P1 (InSe-I) to metallic rocksalt cubic phase P3 (InSe-III) at 12 GPa. Certainly, the pressure-induced metallization of InSe results from the pressure-induced structural phase transition. In addition, Hall-effect measurements display the carrier transport behavior of InSe under pressure, which indicates that InSe undergoes a carrier-type inversion around 6.6 GPa and the increases of the carrier concentration is the dominant factor producing the decrease of the resistivity after 9.9 GPa.
    • 基金项目: 国家自然科学基金(批准号: 11074094, 11164031, 51272224)和国家重点基础研究发展计划(批准号: 2011CB808204)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074094, 11164031, 51272224) and the National Basic Research Program of China (Grant No. 2011CB808204).
    [1]

    Sánchez-Royo J F, Segura A, Lang O, Schaar E, Pettenkofer C, Jaegermann W, Roa L, Chevy A 2001 J. Appl. Phys. 90 2818

    [2]

    Putnam R S and Lancaster D G 1999 Appl. Opt. 38 1513

    [3]

    Kaindl R A, Eickemeyer F, Woerner M, Elsaesser T 1999 Appl. Phys. Lett. 75 1060

    [4]

    Martinez-Pastor J, Segura A, Valdes J L, Chevy A 1987 J. Appl. Phys. 62 1477

    [5]

    Julien C, Jouanne M, Burret P A, Balkanski M 1988 Solid State Lonics 28-30 1167

    [6]

    Balkanski M, Gomesda C P, Wallis R F 1996 Basic Solid State Phys. 194 175

    [7]

    Bridgman P W 1921 Am. Acad. Arts and Sci. 56 61

    [8]

    Bridgman P W 1951 The British J. Philosophy Sci. 1 257

    [9]

    Jayaraman A 1983 Rev. Modern Phys. 55 65

    [10]

    Segura A, Errandonea D Martínez-García D, Manjón F J, Chevy A, Tobias G, Ordejón P, Canadell E 2007 Phys. Solid State B 244 162

    [11]

    Polian A, Kunc K, Khun A 1976 Solid State Commun. 19 1709

    [12]

    Carlone C, Jandl S, Shanks H R 1981 Phys. Solid State B 103 123

    [13]

    Kuroda N, Ueno O, Nishina Y 1987 Phys. Rev. B 35 3860

    [14]

    Gauthier M, Polian A, Besson J M, Chevy A 1989 Phys. Rev. B 40 3837

    [15]

    Likforman A, Carre D, Etienne J, Bachet B 1975 Acta Crystallograph. B 31 1252

    [16]

    Manjon F J, Errandonea D, Segura A, Chervin J C, Munoz V 2002 High Pressure Research 22 261

    [17]

    Errandonea D, Martínez-García D, Segura A, Ruiz-Fuertes J, Lacomba-Perales R, Fages V, Chevy A, Roa L, Mnoz-San J V 2006 High Pressure Research 26 513

    [18]

    Vezzoli G C 1971 Mater. Res. Bull. 6 1201

    [19]

    Ferlat G, Martínez-García D, San Miguel A, Aouizerat A, Muñoz-Sanjosé V 2004 High Pressure Research 24 111

    [20]

    Errandonea D, Martínez-García D, Segura A, Haines J, Machado-Charry E, Canadell E, Chervin J C, Chevy A 2008 Phys. Rev. B 77 045208

    [21]

    Errandonea D, Martínez-García D, Segura A, Chevy A, Tobias G, Canadell E, Ordejon P 2006 Phys. Rev. B 73 235202

    [22]

    Takemura K, Minomura S, Shimomura O, Fujii Y 1980 Phys. Rev. Lett. 45 1881

    [23]

    Hu T J, Cui X Y, Gao Y, Han Y H, Liu C L, Liu B, Liu H, Ma Y Z, Gao C X 2010 Rev. Sci. Instrum. 81 5101

    [24]

    Gao C X, Han Y H, Ma Y Z, White A, Liu H W, Luo J F, Li M, He C Y, Hao A M, Huang X W, Pan Y W, Zou G T 2005 Rev. Sci. Instrum. 76 083912-1

    [25]

    Wu B J, Han Y H, Peng G, Liu C L, Wang Y, Gao C X 2010 Acta Phys. Sin. 59 4265 (in Chinese) [吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓 2010 59 4265]

    [26]

    Zhang J K, Han Y H, Liu C L, Ren W B, Li Y, Wang Q L, Su N N, Li Y Q, Ma B W, Ma Y Z, Gao C X 2011 J. Phys. Chem. C 115 20710

    [27]

    Chen A L, Yu P Y, Taylor R D 1993 Phys. Rev. Lett. 71 4011

    [28]

    Manjón F J, Errandonea D, Segura A, Muñoz V, Tobías G, Ordejón P, Canadell E 2001 Phys. Rev. B 63 125330

    [29]

    Segura A, Manjón F J, Errandonea D, Pellicer-Porres J, Muñoz V, Tobias G, Ordejón P, Canadell E, San Miguel A, Sánchez-Portal D 2003 Phys. Solid State B 235 267

  • [1]

    Sánchez-Royo J F, Segura A, Lang O, Schaar E, Pettenkofer C, Jaegermann W, Roa L, Chevy A 2001 J. Appl. Phys. 90 2818

    [2]

    Putnam R S and Lancaster D G 1999 Appl. Opt. 38 1513

    [3]

    Kaindl R A, Eickemeyer F, Woerner M, Elsaesser T 1999 Appl. Phys. Lett. 75 1060

    [4]

    Martinez-Pastor J, Segura A, Valdes J L, Chevy A 1987 J. Appl. Phys. 62 1477

    [5]

    Julien C, Jouanne M, Burret P A, Balkanski M 1988 Solid State Lonics 28-30 1167

    [6]

    Balkanski M, Gomesda C P, Wallis R F 1996 Basic Solid State Phys. 194 175

    [7]

    Bridgman P W 1921 Am. Acad. Arts and Sci. 56 61

    [8]

    Bridgman P W 1951 The British J. Philosophy Sci. 1 257

    [9]

    Jayaraman A 1983 Rev. Modern Phys. 55 65

    [10]

    Segura A, Errandonea D Martínez-García D, Manjón F J, Chevy A, Tobias G, Ordejón P, Canadell E 2007 Phys. Solid State B 244 162

    [11]

    Polian A, Kunc K, Khun A 1976 Solid State Commun. 19 1709

    [12]

    Carlone C, Jandl S, Shanks H R 1981 Phys. Solid State B 103 123

    [13]

    Kuroda N, Ueno O, Nishina Y 1987 Phys. Rev. B 35 3860

    [14]

    Gauthier M, Polian A, Besson J M, Chevy A 1989 Phys. Rev. B 40 3837

    [15]

    Likforman A, Carre D, Etienne J, Bachet B 1975 Acta Crystallograph. B 31 1252

    [16]

    Manjon F J, Errandonea D, Segura A, Chervin J C, Munoz V 2002 High Pressure Research 22 261

    [17]

    Errandonea D, Martínez-García D, Segura A, Ruiz-Fuertes J, Lacomba-Perales R, Fages V, Chevy A, Roa L, Mnoz-San J V 2006 High Pressure Research 26 513

    [18]

    Vezzoli G C 1971 Mater. Res. Bull. 6 1201

    [19]

    Ferlat G, Martínez-García D, San Miguel A, Aouizerat A, Muñoz-Sanjosé V 2004 High Pressure Research 24 111

    [20]

    Errandonea D, Martínez-García D, Segura A, Haines J, Machado-Charry E, Canadell E, Chervin J C, Chevy A 2008 Phys. Rev. B 77 045208

    [21]

    Errandonea D, Martínez-García D, Segura A, Chevy A, Tobias G, Canadell E, Ordejon P 2006 Phys. Rev. B 73 235202

    [22]

    Takemura K, Minomura S, Shimomura O, Fujii Y 1980 Phys. Rev. Lett. 45 1881

    [23]

    Hu T J, Cui X Y, Gao Y, Han Y H, Liu C L, Liu B, Liu H, Ma Y Z, Gao C X 2010 Rev. Sci. Instrum. 81 5101

    [24]

    Gao C X, Han Y H, Ma Y Z, White A, Liu H W, Luo J F, Li M, He C Y, Hao A M, Huang X W, Pan Y W, Zou G T 2005 Rev. Sci. Instrum. 76 083912-1

    [25]

    Wu B J, Han Y H, Peng G, Liu C L, Wang Y, Gao C X 2010 Acta Phys. Sin. 59 4265 (in Chinese) [吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓 2010 59 4265]

    [26]

    Zhang J K, Han Y H, Liu C L, Ren W B, Li Y, Wang Q L, Su N N, Li Y Q, Ma B W, Ma Y Z, Gao C X 2011 J. Phys. Chem. C 115 20710

    [27]

    Chen A L, Yu P Y, Taylor R D 1993 Phys. Rev. Lett. 71 4011

    [28]

    Manjón F J, Errandonea D, Segura A, Muñoz V, Tobías G, Ordejón P, Canadell E 2001 Phys. Rev. B 63 125330

    [29]

    Segura A, Manjón F J, Errandonea D, Pellicer-Porres J, Muñoz V, Tobias G, Ordejón P, Canadell E, San Miguel A, Sánchez-Portal D 2003 Phys. Solid State B 235 267

  • [1] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应.  , 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [2] 苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋. Te掺杂对二维InSe抗氧化性以及电子结构的影响.  , 2023, 72(12): 123101. doi: 10.7498/aps.72.20230004
    [3] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [4] 李鸿明, 董闯, 王清, 李晓娜, 赵亚军, 周大雨. 电阻率与强度性能的关联及铜合金性能分区.  , 2019, 68(1): 016101. doi: 10.7498/aps.68.20181498
    [5] 伍友成, 刘高旻, 戴文峰, 高志鹏, 贺红亮, 郝世荣, 邓建军. 冲击波作用下Pb(Zr0.95Ti0.05)O3铁电陶瓷去极化后电阻率动态特性.  , 2017, 66(4): 047201. doi: 10.7498/aps.66.047201
    [6] 李蕊, 左小伟, 王恩刚. 时效Ag-7wt.%Cu合金的微观组织、电阻率和硬度.  , 2017, 66(2): 027401. doi: 10.7498/aps.66.027401
    [7] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响.  , 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [8] 刘雅洁. 直接利用磁场和温度精确确定磁性材料La0.67Ca0.33MnO3和Pr0.7Sr0.3MnO3的电阻率.  , 2013, 62(1): 017601. doi: 10.7498/aps.62.017601
    [9] 罗晓东, 狄国庆. 溅射制备Ge,Nb共掺杂窄光学带隙和低电阻率的TiO2薄膜.  , 2012, 61(20): 206803. doi: 10.7498/aps.61.206803
    [10] 谌岩, 刘琳, 刘建华, 张瑞军. 高压处理对Cu75.15Al24.85合金组织与电阻率的影响.  , 2012, 61(17): 176103. doi: 10.7498/aps.61.176103
    [11] 王磊, 杨华岳. 高压LDMOS晶体管准饱和效应分析与建模.  , 2010, 59(1): 571-578. doi: 10.7498/aps.59.571
    [12] 张明晓, 田学雷, 郭风祥. 电磁感应式液固态金属电阻率定性测量装置及应用.  , 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [13] 樊飞, 班春燕, 王洋, 巴启先, 崔建忠. 普通铸造和低频电磁铸造7050铝合金电阻率-温度特性的研究.  , 2009, 58(1): 638-643. doi: 10.7498/aps.58.638
    [14] 别少伟, 江建军, 马 强, 杜 刚, 袁 林, 邸永江, 冯则坤, 何华辉. 高电阻率多层纳米颗粒膜软磁特性及微波磁导率.  , 2008, 57(4): 2514-2518. doi: 10.7498/aps.57.2514
    [15] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能.  , 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [16] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率.  , 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [17] 龙云泽, 陈兆甲, 张志明, 万梅香, 郑 萍, 王楠林, 贺朝会, 耿 斌, 杨海亮, 陈晓华, 王燕萍, 李国政. 纳米管结构聚苯胺的电阻率和磁化率.  , 2003, 52(1): 175-179. doi: 10.7498/aps.52.175
    [18] 陈卫平, 冯尚申, 焦正宽. Fe15.16Ag84.84金属颗粒膜自旋极化相关的霍尔效应研究.  , 2003, 52(12): 3176-3180. doi: 10.7498/aps.52.3176
    [19] 王强, 陆坤权, 李言祥. 液态InSb电阻率和热电势与温度的关系.  , 2001, 50(7): 1355-1358. doi: 10.7498/aps.50.1355
    [20] 李慧玲, 阮可青, 李世燕, 莫维勤, 樊荣, 罗习刚, 陈仙辉, 曹烈兆. MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究.  , 2001, 50(10): 2044-2048. doi: 10.7498/aps.50.2044
计量
  • 文章访问数:  7571
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-09
  • 修回日期:  2013-03-25
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map