Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

μSR experimental progress and trends of developing muon facilities

Wang Ying Shu Lei

Citation:

μSR experimental progress and trends of developing muon facilities

Wang Ying, Shu Lei
cstr: 32037.14.aps.73.20240940
PDF
HTML
Get Citation
  • Muon spin relaxation/rotation (μSR) is a highly sensitive technique for investigating magnetic properties on an atomic scale. With the continuous development of this technique, the researches in condensed matter physics have been significantly promoted. Firstly, this article introduces the advantages and uniqueness of μSR technique, followed by several recent progress contributed by μSR in the field of condensed matter physics, including revealing the magnetic ground state of superconducting nickelates La3Ni2O7 and (R, Sr)NiO2, the investigation into the charge density wave in kagome lattice superconductor AV3Sb5 (A = K, Rb), identifying the magnetic droplets immersed in a sea of quantum spin liquid ground state in NaYbSe2, and the exploration of magnetic monopole near a magnetoelectric surface of Cr2O3. Finally, this article summarizes the current construction status and upgrade plans of muon facilities in the world.
      Corresponding author: Shu Lei, leishu@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174065) and the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01).
    [1]

    Karlsson E B 2022 Eur. Phys. J. H 47 4Google Scholar

    [2]

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257 [殳蕾, 倪晓杰, 潘子文 2021 物理 50 257]Google Scholar

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257Google Scholar

    [3]

    Bednorz J G, Muller K A 1986 Z. Phys. B Condens. Mat. 64 189Google Scholar

    [4]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Tohyama T 2012 Jpn. J. Appl. Phys. 51 10004Google Scholar

    [7]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [8]

    Fowlie J, Hadjimichael M, Martins M M, Li D, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J, Hwang H Y, Suter A 2022 Nat. Phys. 18 1043Google Scholar

    [9]

    Yin J X, Lian B, Hasan M Z 2022 Nature 612 647Google Scholar

    [10]

    Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 94407Google Scholar

    [11]

    Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, Khasanov R 2023 Nat. Commun. 14 153Google Scholar

    [12]

    Shumiya N, Hossain M S, Yin J, Jiang Y, Ortiz B R, Liu H, Shi Y, Yin Q, Le H, Zhan S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z, Yang X P, Guguchia Z, Wilson S D, Hasan M Z 2021 Phys. Rev. B 104 35131Google Scholar

    [13]

    Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar

    [14]

    Liu W W, Zhang Z, Ji J T, Liu Y X, Li J Q, Wang X Q, Lei H C, Chen G, Zhang Q M 2018 Chin. Phys. Lett. 35 117501Google Scholar

    [15]

    Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 Innovation 4 100459Google Scholar

    [16]

    Dirac P 1931 Proc. R. Soc. London Ser. A-Math. Phys. 133 60Google Scholar

    [17]

    Rajantie A 2016 Phys. Today 69 40Google Scholar

    [18]

    Fechner M, Spaldin N A, Dzyaloshinskii I E 2014 Phys. Rev. B 89 184415Google Scholar

    [19]

    Wiegelmann H, Jansen A G M, Wyder P, Rivera J P, Schmid H 1994 Ferroelectrics 162 141Google Scholar

    [20]

    Meier Q N, Fechner M, Nozaki T, Sahashi M, Salman Z, Prokscha T, Suter A, Schoenherr P, Lilienblum M, Borisov P, Dzyaloshinskii I E, Fiebig M, Luetkens H, Spaldin N A 2019 Phys. Rev. X 9 11011Google Scholar

    [21]

    SμS Instruments. https://www.psi.ch/en/smus/instruments [2024-09-18]

    [22]

    FLexible Advanced MuSR Environment (FLAME) Project. https://www.psi.ch/en/smus/flame-project [2024-09-18]

    [23]

    Super-MuSR. https://www.isis.stfc.ac.uk/Pages/Super-MuSR.aspx [2024-09-18]

    [24]

    μSR Beamlines at TRIUMF. https://cmms.triumf.ca/equip/muSRbeamlines.html [2024-09-18]

    [25]

    Muon Instruments at Materials and Life Science Experimental Facility. https://j-parc.jp/researcher/MatLife/en/instrumentation/ms.html [2024-09-18]

    [26]

    Kanda S, Teshima N, Adachi T, Ikedo Y, Miyake Y, Nagatani Y, Nakamura S, Oishi Y, Shimomura K, Strasser P, Umezawa T 2023 The Ultra-Slow Muon Beamline at J-PARC: Present Status and Future Prospects2462) (Parma) p12030

    [27]

    Li Q, Pan Z W, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 Design of the First μSR Spectrometer at China Spallation Neutron Source2462) (Parma) p12022

    [28]

    Williams T J, MacDougall G J 2017 Future Muon Source Possibilities at the SNS (Oak Ridge, TN (United States): Office of Scientific and Technical Information (OSTI)

    [29]

    Choi S, Park J, Roh Y J 2015 J. Korean Phys. Soc. 66 762Google Scholar

    [30]

    彭毅, 赵国强, 邓正, 靳常青 2024 73 017503Google Scholar

    Peng Y, Zhao G Q, Deng Z, Jin C Q 2024 Acta Phys. Sin. 73 017503Google Scholar

    [31]

    McClelland I, Johnston B, Baker P J, Amores M, Cussen E J, Corr S A (Clarke D R ed) 2020 Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials) p371

  • 图 1  (a) μSR技术的原理示意图; (b) μSR技术填补了其他手段测量动态磁场的频率空白

    Figure 1.  (a) Schematic diagram of the principle of μSR technique; (b) μSR technique fills in the gap of magnetic fluctuation rate between multiple techniques.

    图 2  (a) La3Ni2O7中的缪子不对称性参数谱在154 K以下出现了明显的振荡衰减[7]; (b) RbV3Sb5中缪子自旋弛豫率Γ在CDW转变温度$T_1^* 和T_2^*$处明显增强, 表明出现该转变打破时间反演对称[11]; (c) 量子自旋液体“海洋”中沉浸的自旋磁滴[15]; (d) 磁电材料Cr2O3表面上的单个电荷将诱导出表面下的镜像磁单极子, 这一镜像磁单极子又能在表面之上产生理想的单极磁场[20]

    Figure 2.  (a) Muon asymmetry spectrum in La3Ni2O7 shows clear oscillations and damping below T = 154 K[7]; (b) muon spin relaxation rate Γ, is strongly enhanced below $T = T_1^*,\;T_2^* $, suggesting the time reversal symmetry broken CDW in RbV3Sb5[11]; (c) magnetic droplets immersed in a sea of quantum spin liquid[15]; (d) a single charge above the surface of magnetoelectric materials, Cr2O3, induces an image monopole beneath the surface, the image monopole then generates an ideal monopolar magnetic field above the surface[20].

    表 1  μSR设施的主要参数

    Table 1.  Main parameters of μSR facilities.

    主要参数 PSI TRIUMF ISIS J-PARC CSNS
    质子功率/MW 1.4 0.07 0.14 1 0.02
    表面缪子流强/s–1 107—109 2×106 107—108 1.5×107 105
    自旋极化率/% > 95 > 90 > 90 > 95 95
    重复频率/Hz 连续型 连续型 40 25 1—5
    不对称性参数A0 0.3 0.28 0.28 0.25 0.32
    计数率/(M·h–1·cm–2) ~25 ~15 ~100* ~55 ~20
    注: * 100 M/(h·cm2)是ISIS现有谱仪EMU的计数率, 正在改建的Super-MuSR将会使计数率提高到约1400 M/(h·cm2).
    DownLoad: CSV
    Baidu
  • [1]

    Karlsson E B 2022 Eur. Phys. J. H 47 4Google Scholar

    [2]

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257 [殳蕾, 倪晓杰, 潘子文 2021 物理 50 257]Google Scholar

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257Google Scholar

    [3]

    Bednorz J G, Muller K A 1986 Z. Phys. B Condens. Mat. 64 189Google Scholar

    [4]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Tohyama T 2012 Jpn. J. Appl. Phys. 51 10004Google Scholar

    [7]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [8]

    Fowlie J, Hadjimichael M, Martins M M, Li D, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J, Hwang H Y, Suter A 2022 Nat. Phys. 18 1043Google Scholar

    [9]

    Yin J X, Lian B, Hasan M Z 2022 Nature 612 647Google Scholar

    [10]

    Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 94407Google Scholar

    [11]

    Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, Khasanov R 2023 Nat. Commun. 14 153Google Scholar

    [12]

    Shumiya N, Hossain M S, Yin J, Jiang Y, Ortiz B R, Liu H, Shi Y, Yin Q, Le H, Zhan S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z, Yang X P, Guguchia Z, Wilson S D, Hasan M Z 2021 Phys. Rev. B 104 35131Google Scholar

    [13]

    Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar

    [14]

    Liu W W, Zhang Z, Ji J T, Liu Y X, Li J Q, Wang X Q, Lei H C, Chen G, Zhang Q M 2018 Chin. Phys. Lett. 35 117501Google Scholar

    [15]

    Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 Innovation 4 100459Google Scholar

    [16]

    Dirac P 1931 Proc. R. Soc. London Ser. A-Math. Phys. 133 60Google Scholar

    [17]

    Rajantie A 2016 Phys. Today 69 40Google Scholar

    [18]

    Fechner M, Spaldin N A, Dzyaloshinskii I E 2014 Phys. Rev. B 89 184415Google Scholar

    [19]

    Wiegelmann H, Jansen A G M, Wyder P, Rivera J P, Schmid H 1994 Ferroelectrics 162 141Google Scholar

    [20]

    Meier Q N, Fechner M, Nozaki T, Sahashi M, Salman Z, Prokscha T, Suter A, Schoenherr P, Lilienblum M, Borisov P, Dzyaloshinskii I E, Fiebig M, Luetkens H, Spaldin N A 2019 Phys. Rev. X 9 11011Google Scholar

    [21]

    SμS Instruments. https://www.psi.ch/en/smus/instruments [2024-09-18]

    [22]

    FLexible Advanced MuSR Environment (FLAME) Project. https://www.psi.ch/en/smus/flame-project [2024-09-18]

    [23]

    Super-MuSR. https://www.isis.stfc.ac.uk/Pages/Super-MuSR.aspx [2024-09-18]

    [24]

    μSR Beamlines at TRIUMF. https://cmms.triumf.ca/equip/muSRbeamlines.html [2024-09-18]

    [25]

    Muon Instruments at Materials and Life Science Experimental Facility. https://j-parc.jp/researcher/MatLife/en/instrumentation/ms.html [2024-09-18]

    [26]

    Kanda S, Teshima N, Adachi T, Ikedo Y, Miyake Y, Nagatani Y, Nakamura S, Oishi Y, Shimomura K, Strasser P, Umezawa T 2023 The Ultra-Slow Muon Beamline at J-PARC: Present Status and Future Prospects2462) (Parma) p12030

    [27]

    Li Q, Pan Z W, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 Design of the First μSR Spectrometer at China Spallation Neutron Source2462) (Parma) p12022

    [28]

    Williams T J, MacDougall G J 2017 Future Muon Source Possibilities at the SNS (Oak Ridge, TN (United States): Office of Scientific and Technical Information (OSTI)

    [29]

    Choi S, Park J, Roh Y J 2015 J. Korean Phys. Soc. 66 762Google Scholar

    [30]

    彭毅, 赵国强, 邓正, 靳常青 2024 73 017503Google Scholar

    Peng Y, Zhao G Q, Deng Z, Jin C Q 2024 Acta Phys. Sin. 73 017503Google Scholar

    [31]

    McClelland I, Johnston B, Baker P J, Amores M, Cussen E J, Corr S A (Clarke D R ed) 2020 Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials) p371

  • [1] Yin Jia-Xin, Wang Qiang-Hua. Superconducting gap modulations: Are they from pair density waves or pair-breaking scattering?. Acta Physica Sinica, 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [2] Zhao Zong-Yang, Li Ming, Zhou Tao. Single magnetic impurity effects in graphene based superconductors. Acta Physica Sinica, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [3] Guo Lin, Yang Xiao-Fan, Cheng Er-Jian, Pan Bing-Lin, Zhu Chu-Chu, Li Shi-Yan. Pressure-induced superconductivity in triangular lattice spin liquid candidate NaYbSe2. Acta Physica Sinica, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [4] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [5] Feng Xi-Lin, Jiang Kun, Hu Jiang-Ping. Kagome superconductors. Acta Physica Sinica, 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [6] Ji Yi-Ru, Chu Yan-Bang, Xian Le-De, Yang Wei, Zhang Guang-Yu. From magic angle twisted bilayer graphene to moiré superlattice quantum simulator. Acta Physica Sinica, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [7] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [8] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] Jiang En-Hai, Zhu Xing-Feng, Chen Ling-Fu. First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy Co2MnAl(100) surface. Acta Physica Sinica, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [10] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [11] Li Cheng-Di, Zhao Jing-Long, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. First-principles study of magnetic ground state of quantum paraelectric EuTiO3 material. Acta Physica Sinica, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [12] Shi Liang-Ma, Zhang Shi-Jun, Zhu Ren-Yi. Numerical simulation of vortex structure in mesoscopic two-gap superconductor. Acta Physica Sinica, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [13] Zhou Yu, Zhang La-Bao, Jia Tao, Zhao Qing-Yuan, Gu Min, Qiu Jian, Kang Lin, Chen Jian, Wu Pei-Heng. Response properties of NbN superconductor nanowire for multi-photon. Acta Physica Sinica, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [14] Gao Shuang-Hong, Ren Zhao-Yu, Guo Ping, Zheng Ji-Ming, Du Gong-He, Wan Li-Juan, Zheng Lin-Lin. Magnetic properties and excited states of thegraphene quantum dots. Acta Physica Sinica, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [15] Wang Yong-Long, Pan Hong-Zhe, Xu Ming, Chen Li, Sun Yuan-Yuan. Electronic structure and magnetism of single-layer trigonal graphene quantum dots with zigzag edges. Acta Physica Sinica, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [16] Yang Peng-Fei, Bai Jin-Tao, Yang Xiao-Peng. The strict solutions to the field distribution of superconducting unbounded slab model. Acta Physica Sinica, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [17] Yang Peng-Fei, Chen Wen-Xue. The distribution and origination of electric field and charge in interface layer of superconductor. Acta Physica Sinica, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [18] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] Xu Rong-Qing, Wang Jia-Fu, Zhou Qing-Chun. . Acta Physica Sinica, 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
    [20] DONG ZHENG-CHAO, XING DING-YU, DONG JIN-MING. SHOT NOISE IN FERROMAGNET-SUPERCONDUCTOR TUNNELING JUNCTION. Acta Physica Sinica, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
Metrics
  • Abstract views:  924
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2024
  • Accepted Date:  30 August 2024
  • Available Online:  04 September 2024
  • Published Online:  05 October 2024

/

返回文章
返回
Baidu
map