Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Efficient field-circuit co-simulation method for GaN-based high power microwave devices

Zhang Tian-Cheng Chen Di-Na Li Chun-Yu Zhang Li-Min Xu Zu-Yin Cheng Ai-Qiang Bao Hua-Guang Ding Da-Zhi

Citation:

Efficient field-circuit co-simulation method for GaN-based high power microwave devices

Zhang Tian-Cheng, Chen Di-Na, Li Chun-Yu, Zhang Li-Min, Xu Zu-Yin, Cheng Ai-Qiang, Bao Hua-Guang, Ding Da-Zhi
PDF
HTML
Get Citation
  • Due to the development of the third-generation semiconductors representative of gallium nitride (GaN), the microwave power devices are developing towards higher power, higher efficiency and high integration. However, the electromagnetic field effects are more significant inside the device. As a result, circuit-level based simulation techniques can no longer satisfy the accuracy requirements of device design. Therefore it is necessary to urgently establish the field-circuit co-simulation techniques to couple the active GaN devices with passive electromagnetic structures. In this work, we propose a high-precision discontinuous Galerkin time-domain method to analyze the performances of GAN-based high-power microwave devices. The extracted large-signal compact model of the GaN HEMT is incorporated into the electromagnetic field equations. A local time-stepping technique is adopted to remove the constraints of nonlinear compact models and multiscale elements on the stability conditions of the global algorithm. The comparisons among numerical simulations, experimental results, and software calculations demonstrate the excellent accuracy and efficiency of the proposed method, which can provide a theoretical analysis and design tool for the high reliability design of advanced high-power microwave devices.
      Corresponding author: Bao Hua-Guang, hgbao@njust.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2022YFF0707800, 2022YFF0707802), the Natural Science Foundation of China (Grant Nos. 62201257, 62025109, 62001231), the Primary Research & Development Plan of Jiangsu Province, China (Grant Nos. BE2022070, BE2022070-1), and the Jiangsu Provincial Funding Program for Excellent Postdoctoral Talent, China.
    [1]

    郝跃 2019 科技导报 37 58

    Hao Y 2019 Sci. Technol. Rev. 37 58

    [2]

    Riddle A 2008 IEEE Microwave Mag. 9 154Google Scholar

    [3]

    Zhang X Y, Yang L A, Hu X L, Yang W L, Liu Y C, Li Y, Ma X H, Hao Y 2022 IEEE Trans. Electron Devices 69 1006Google Scholar

    [4]

    Prasad A, Thorsell M, Zirath H, Fager C 2018 IEEE Trans. Microwave Theory Tech. 66 845Google Scholar

    [5]

    Wang Y, Wu Q Z, Yan B, Xu R M, Xu Y H 2022 IEEE Trans. Microwave Theory Tech. 70 315Google Scholar

    [6]

    马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃 2012 61 047301Google Scholar

    Ma J G, Ma X H, Zhang H L, Cao M Y, Zhang K, Li W W, Guo X, Liao X Y, Chen W W, Hao Y 2012 Acta Phys. Sin. 61 047301Google Scholar

    [7]

    Angelov I, Andersson K, Schreurs D, Xiao D, Rorsman N, Desmaris V, Sudow M, Zirath H 2006 2006 Asia-Pacific Microwave Conference Yokohama, Japan, December 12–15, 2006 p1699

    [8]

    Schwantuschke D, Seelmann E M, Bruckner P, Quay R, Kallfass I 2013 2013 European Microwave Integrated Circuit Conference Nuremberg, Germany, Oct 6–8, 2013 p284

    [9]

    Jardel O, Groote F D, Reveyrand T, Jacquet J C, Charbonniaud C, Teyssier J P, Floriot D, Quere R 2007 IEEE Trans. Microwave Theory Tech. 55 2660Google Scholar

    [10]

    Yuk K S, Branner G R, McQuate D J 2009 IEEE Trans. Microwave Theory Tech. 57 3322Google Scholar

    [11]

    Luo X B, Yu W H, Lü X, Lü Y J, Dun S B, Feng Z H 2014 IEICE Electron. Express 11 20140613Google Scholar

    [12]

    Wu Q Z, Xu Y H, Chen Y B, Wang Y, Fu W L, Yan B, Xu R M 2018 IEEE Trans. Microwave Theory Tech. 66 1192Google Scholar

    [13]

    Zhao Z, Zhang L, Feng F, ZHang W, Zhang Q J 2020 IEEE Trans. Microwave Theory Tech. 68 3318Google Scholar

    [14]

    Sui W Q, Christensen D A, Durney C H 1992 IEEE Trans. Microwave Theory Tech. 40 724Google Scholar

    [15]

    Chen S T, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 3034Google Scholar

    [16]

    Tian C Y, Shi Y, Shum K M, Chan C H 2020 IEEE Trans. Antennas Propag. 68 3026Google Scholar

    [17]

    Kuo C N, Wu R B, Houshband B, Qian Y, Itoh T 1996 IEEE Trans. Microwave Guided Wave Lett. 6 199Google Scholar

    [18]

    Ma K P, Vhen M, Houshband B, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 859Google Scholar

    [19]

    Gonzalez O, Pereda J A, Herrera A, Vegas A 2006 IEEE Trans. Microwave Theory Tech. 54 3045Google Scholar

    [20]

    Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar

    [21]

    Bagci H, Yilmaz A E, Jin J M, Michielssen E 2007 IEEE Trans. Electromagn. Compat. 49 361Google Scholar

    [22]

    Chen S T, Ding D Z, Fan Z H, Chen R S 2018 IEEE Microwave Wireless Compon. Lett. 28 431Google Scholar

    [23]

    Lee J H, Liu Q H 2007 IEEE Trans. Microwave Theory Tech. 55 983Google Scholar

    [24]

    Ren Q, Bian Y, Kang L, Werner P L, Werner D H 2017 J. Lightwave Technol. 35 4888Google Scholar

    [25]

    Li P, Jiang L J 2013 IEEE Trans. Microwave Theory Tech. 61 2525Google Scholar

    [26]

    Zhang T, Bao H G, Gu P F, Ding D Z, Werner D H, Chen R S 2022 IEEE Trans. Antennas Propag. 70 526Google Scholar

    [27]

    Gao J J, Werthof A 2009 IEEE Trans. Microwave Theory Tech. 57 737Google Scholar

    [28]

    Wen Z, Xu Y H, Wang C S, Zhao X D, Xu R M 2017 Int. J. Numer. Model. Electron. Networks Devices Fields 30 e2127Google Scholar

    [29]

    闻彰 2018 博士学位论文 (成都: 电子科技大学)

    Wen Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [30]

    Zhang H H, Wang P P, Zhang S, Li L, Sha W E I, Jiang L J 2020 Prog. Electromagn. Res. 169 87Google Scholar

    [31]

    Grote M J, Mehlin M, Mitkova T 2015 SIAM J. Sci. Comput. 37 A747Google Scholar

    [32]

    Cui X, Yang F, Gao M 2018 IET Microwaves Antennas Propag. 12 963Google Scholar

    [33]

    Schomann S, Godel N, Warburton T, Clemens M 2020 IEEE Trans. Magn. 46 3504

    [34]

    Wang R, Jin J M 2011 IEEE Trans. Adv. Packag. 33 769

  • 图 1  GaN HEMT大信号等效电路拓扑结构

    Figure 1.  Large signal equivalent circuit model of GaN HEMT.

    图 2  大信号模型参数一体化提取整体流程

    Figure 2.  Process of parameter extraction for the large signal model.

    图 3  微波功率器件场路耦合示意图

    Figure 3.  Schematic diagram of field circuit coupling for microwave power devices.

    图 4  相邻单元交界面处的数值通量

    Figure 4.  Numerical flux at the interface of adjacent elements.

    图 5  微波放大器结构模型示意图

    Figure 5.  Schematic diagram of microwave amplifier.

    图 6  区域划分示意图

    Figure 6.  Schematic diagram of area division.

    图 7  LTS -DGTD计算流程示意图

    Figure 7.  Schematic diagram of LTS-DGTD calculation.

    图 8  GaN HEMT器件大信号模型S参数测试(符号)与仿真(实线)结果对比

    Figure 8.  Comparison of S-parameter between simulation (solid line) and measurement (symbol) of GaN HEMT large-signal model.

    图 9  输出功率及效率对比 (a) 1.1 GHz; (b) 1.5 GHz

    Figure 9.  Comparison of output power and efficiency at different frequency: (a) 1.1 GHz; (b) 1.5 GHz.

    图 10  微波功分器电路示意图

    Figure 10.  Diagram of microwave power divider.

    图 11  端口3电压输出信号时域波形

    Figure 11.  Voltage signal waveform in time domain of port 3.

    图 12  (a) GaN基大功率微波器件示意图; (b) 共形网格离散; (c) 非共形网格

    Figure 12.  (a) Schematic diagram of GaN-based large power microwave device, discretized model with (b) conformal elements and (c) non-conformal elements.

    图 13  微波器件端口电压时域波形图

    Figure 13.  Time domain waveform of port voltages of microwave device.

    图 14  放大器输入、输出端电压

    Figure 14.  The input and output voltages of microwave amplifier.

    表 1  GaN HEMT的寄生参数

    Table 1.  The parasitic parameters of GaN HEMT.

    Cpga/fFCpda/fFCgda/fFCpgi/fFCpdi/fFCgdi/fF
    99.154.434.61548.431.160.74
    RgRdRsLg/pHLd/pHLs/pH
    0.2568.8460.7265.0738.7211.98
    DownLoad: CSV

    表 2  GaN HEMT大信号模型的非线性电流参数

    Table 2.  Nonlinear circuit parameters of large signal model for GaN HEMT.

    K10 K11 K20 K21 K30 K31 Vpk1 Vpk2 Vpk3 $ {\alpha _1} $
    –1.09633 –0.285951 –4.01665×10–2 –9.8227×10–3 –1.99307×10–2 2.25872×10–3 8.3227 15.3274 –0.737977 3.0232
    $ {\alpha _2} $ $ {\alpha _3} $ $ \alpha $ gm Vgsm Kp1 Kp2 Kp3 Mipk1 KM
    2.65394 3.27743 0.643925 0.992594 0.436392 7.346×10–4 7.28773×10–2 1.31013×10–2 0.532239 –1.06691
    Ipkth Rth Vdsq Vgsq γsurf γsubs Vdssubs Vgsqpinch
    0.215471 0.10027 1.3846 –3.21923 –1.5589 9.24381×10–3 –0.912853 –2.7
    DownLoad: CSV

    表 3  GaN HEMT大信号模型的栅电容参数

    Table 3.  Grid capacitance parameters of large signal model for GaN HEMT.

    CgspCgs0P10P11P20P21
    0.08670.176511.384.5120.14220.01703
    CgdpCgd0P30P31P40P41
    0.026540.83270.16150.03217–1.310.01814
    DownLoad: CSV

    表 4  计算时间比较

    Table 4.  Comparison of simulation time.

    方法离散单元数采样间隔计算耗时/s
    ADS-版图仿真1644$\Delta f$ = 12.13 MHz142.26
    共形网格DGTD2350$\Delta t$ = 0.286 fs687.69
    非共形网格DGTD768$\Delta t$ = 0.286 fs236.47
    非共形网格LTS-DGTD768$\Delta {t_{\text{l}}}$ = 0.572 fs, $\Delta {t_{\text{s}}}$ = 0.286 fs131.67
    DownLoad: CSV

    表 5  计算时间比较

    Table 5.  Comparison of simulation time.

    方法离散单元数采样间隔计算耗时/s
    ADS-版图仿真1466$\Delta f$ = 1.41 MHz946.79
    共形网格DGTD3920$\Delta t$ = 0.067 fs3303.41
    非共形网格DGTD947$\Delta t$ = 0.067 fs1846.54
    非共形网格LTS-DGTD947$\Delta {t_{\text{l}}}$ = 0.266 fs, $\Delta {t_{\text{s}}}$ = 0.067 fs 621.77
    DownLoad: CSV
    Baidu
  • [1]

    郝跃 2019 科技导报 37 58

    Hao Y 2019 Sci. Technol. Rev. 37 58

    [2]

    Riddle A 2008 IEEE Microwave Mag. 9 154Google Scholar

    [3]

    Zhang X Y, Yang L A, Hu X L, Yang W L, Liu Y C, Li Y, Ma X H, Hao Y 2022 IEEE Trans. Electron Devices 69 1006Google Scholar

    [4]

    Prasad A, Thorsell M, Zirath H, Fager C 2018 IEEE Trans. Microwave Theory Tech. 66 845Google Scholar

    [5]

    Wang Y, Wu Q Z, Yan B, Xu R M, Xu Y H 2022 IEEE Trans. Microwave Theory Tech. 70 315Google Scholar

    [6]

    马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃 2012 61 047301Google Scholar

    Ma J G, Ma X H, Zhang H L, Cao M Y, Zhang K, Li W W, Guo X, Liao X Y, Chen W W, Hao Y 2012 Acta Phys. Sin. 61 047301Google Scholar

    [7]

    Angelov I, Andersson K, Schreurs D, Xiao D, Rorsman N, Desmaris V, Sudow M, Zirath H 2006 2006 Asia-Pacific Microwave Conference Yokohama, Japan, December 12–15, 2006 p1699

    [8]

    Schwantuschke D, Seelmann E M, Bruckner P, Quay R, Kallfass I 2013 2013 European Microwave Integrated Circuit Conference Nuremberg, Germany, Oct 6–8, 2013 p284

    [9]

    Jardel O, Groote F D, Reveyrand T, Jacquet J C, Charbonniaud C, Teyssier J P, Floriot D, Quere R 2007 IEEE Trans. Microwave Theory Tech. 55 2660Google Scholar

    [10]

    Yuk K S, Branner G R, McQuate D J 2009 IEEE Trans. Microwave Theory Tech. 57 3322Google Scholar

    [11]

    Luo X B, Yu W H, Lü X, Lü Y J, Dun S B, Feng Z H 2014 IEICE Electron. Express 11 20140613Google Scholar

    [12]

    Wu Q Z, Xu Y H, Chen Y B, Wang Y, Fu W L, Yan B, Xu R M 2018 IEEE Trans. Microwave Theory Tech. 66 1192Google Scholar

    [13]

    Zhao Z, Zhang L, Feng F, ZHang W, Zhang Q J 2020 IEEE Trans. Microwave Theory Tech. 68 3318Google Scholar

    [14]

    Sui W Q, Christensen D A, Durney C H 1992 IEEE Trans. Microwave Theory Tech. 40 724Google Scholar

    [15]

    Chen S T, Ding D Z, Chen R S 2017 IEEE Antennas Wirel. Propag. Lett. 16 3034Google Scholar

    [16]

    Tian C Y, Shi Y, Shum K M, Chan C H 2020 IEEE Trans. Antennas Propag. 68 3026Google Scholar

    [17]

    Kuo C N, Wu R B, Houshband B, Qian Y, Itoh T 1996 IEEE Trans. Microwave Guided Wave Lett. 6 199Google Scholar

    [18]

    Ma K P, Vhen M, Houshband B, Qian Y, Itoh T 1999 IEEE Trans. Microwave Theory Tech. 47 859Google Scholar

    [19]

    Gonzalez O, Pereda J A, Herrera A, Vegas A 2006 IEEE Trans. Microwave Theory Tech. 54 3045Google Scholar

    [20]

    Bao H G, Chen R S 2017 IEEE Trans. Antennas Propag. 65 1490Google Scholar

    [21]

    Bagci H, Yilmaz A E, Jin J M, Michielssen E 2007 IEEE Trans. Electromagn. Compat. 49 361Google Scholar

    [22]

    Chen S T, Ding D Z, Fan Z H, Chen R S 2018 IEEE Microwave Wireless Compon. Lett. 28 431Google Scholar

    [23]

    Lee J H, Liu Q H 2007 IEEE Trans. Microwave Theory Tech. 55 983Google Scholar

    [24]

    Ren Q, Bian Y, Kang L, Werner P L, Werner D H 2017 J. Lightwave Technol. 35 4888Google Scholar

    [25]

    Li P, Jiang L J 2013 IEEE Trans. Microwave Theory Tech. 61 2525Google Scholar

    [26]

    Zhang T, Bao H G, Gu P F, Ding D Z, Werner D H, Chen R S 2022 IEEE Trans. Antennas Propag. 70 526Google Scholar

    [27]

    Gao J J, Werthof A 2009 IEEE Trans. Microwave Theory Tech. 57 737Google Scholar

    [28]

    Wen Z, Xu Y H, Wang C S, Zhao X D, Xu R M 2017 Int. J. Numer. Model. Electron. Networks Devices Fields 30 e2127Google Scholar

    [29]

    闻彰 2018 博士学位论文 (成都: 电子科技大学)

    Wen Z 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [30]

    Zhang H H, Wang P P, Zhang S, Li L, Sha W E I, Jiang L J 2020 Prog. Electromagn. Res. 169 87Google Scholar

    [31]

    Grote M J, Mehlin M, Mitkova T 2015 SIAM J. Sci. Comput. 37 A747Google Scholar

    [32]

    Cui X, Yang F, Gao M 2018 IET Microwaves Antennas Propag. 12 963Google Scholar

    [33]

    Schomann S, Godel N, Warburton T, Clemens M 2020 IEEE Trans. Magn. 46 3504

    [34]

    Wang R, Jin J M 2011 IEEE Trans. Adv. Packag. 33 769

  • [1] Yang Qian, Wei Bing, Li Lin-Qian, Deng Hao-Chuan. A robust discontinuous Galerkin time domain algorithm for penetrable thin layers. Acta Physica Sinica, 2023, 72(8): 080202. doi: 10.7498/aps.72.20222230
    [2] Yang Qian, Wei Bing, Li Lin-Qian, Deng Hao-Chuan. A simplified impedance boundary algorithm in discontinuous Galerkin time-domain. Acta Physica Sinica, 2023, 72(6): 060202. doi: 10.7498/aps.72.20222104
    [3] Cheng Ai-Qiang, Wang Shuai, Xu Zu-Yin, He Jin, Zhang Tian-Cheng, Bao Hua-Guang, Ding Da-Zhi. A large-signal scaling model of high-power GaN microwave device. Acta Physica Sinica, 2023, 72(14): 147103. doi: 10.7498/aps.72.20230440
    [4] Cui Yi-Xin, Ma Ying-Qi, Shangguan Shi-Peng, Kang Xuan-Wu, Liu Peng-Cheng, Han Jian-Wei. Research on Single Event Burnout of GaN power devices with femtosecond pulsed laser. Acta Physica Sinica, 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [5] Chen Chuan-Sheng, Wang Bing-Zhong, Wang Ren. Conversion method between port field and internal field of electromagnetic device based on time-reversal technique. Acta Physica Sinica, 2021, 70(7): 070201. doi: 10.7498/aps.70.20201682
    [6] Xian Ming-Hao, Liu Xi-Chuan, Yin Min, Song Kun, Gao Tai-Chang. Inversion of vertical rainfall field based on earth-space links. Acta Physica Sinica, 2020, 69(2): 024301. doi: 10.7498/aps.69.20191232
    [7] Liu Nai-Zhang, Zhang Xue-Bing, Yao Ruo-He. The physics-based model of AlGaN/GaN high electron mobility transistor outer fringing capacitances. Acta Physica Sinica, 2020, 69(7): 077302. doi: 10.7498/aps.69.20191931
    [8] Huang Hua, Wu Yang, Liu Zhen-Bang, Yuan Huan, He Hu, Li Le-Le, Li Zheng-Hong, Jin Xiao, Ma Hong-Ge. Review on high power microwave device with locked frequency and phase. Acta Physica Sinica, 2018, 67(8): 088402. doi: 10.7498/aps.67.20172684
    [9] Guo Chun-Sheng, Li Shi-Wei, Ren Yun-Xiang, Gao Li, Feng Shi-Wei, Zhu Hui. Influence of power dissipation and case temperature on thermal resistance of AlGaN/GaN high-speed electron mobility transistor. Acta Physica Sinica, 2016, 65(7): 077201. doi: 10.7498/aps.65.077201
    [10] Zhang Xin-Guo, Sun Hong-Tao, Zhao Jin-Lan, Liu Ji-Zhao, Ma Yi-De, Han Ting-Wu. Equivalent circuit in function and topology to Chua’s circuit and the design methods of these circuits. Acta Physica Sinica, 2014, 63(20): 200503. doi: 10.7498/aps.63.200503
    [11] Jiang Shi-Tai, Gao Tai-Chang, Liu Xi-Chuan, Liu Lei, Liu Zhi-Tian. Investigation of the inversion of rainfall field based on microwave links. Acta Physica Sinica, 2013, 62(15): 154303. doi: 10.7498/aps.62.154303
    [12] Huang Chuan-Lu, Ding Yao-Gen, Wang Yong, Xie Xing-Juan, Gao Dong-Ping. The calculation model of space-charge field based on the Galerkin series. Acta Physica Sinica, 2012, 61(14): 148401. doi: 10.7498/aps.61.148401
    [13] Zhou Li-Dan, Su Jing-Qin, Li Ping, Liu Lan-Qin, Wang Wen-Yi, Wang Fang, Mo Lei, Cheng Wen-Yong, Zhang Xiao-Min. Power spectral density method of defects on optical elements of high-power laser facility and its equivalent algorithm. Acta Physica Sinica, 2009, 58(9): 6279-6284. doi: 10.7498/aps.58.6279
    [14] Gu Wen-Ping, Hao Yue, Zhang Jin-Cheng, Wang Chong, Feng Qian, Ma Xiao-Hua. Degradation under high-field stress and gate stress of AlGaN/GaN HEMTs. Acta Physica Sinica, 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [15] Li Bing-Qian, Liu Yu-Hua, Feng Yu-Chun. The power dissipation of equivalent series resistance and its influence on lumen efficiency of GaN based high power light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [16] Li Qi, Li Zhao-Ji, Zhang Bo. Analytical model for the surface electrical field distribution of double RESURF device with surface implanted P-top region. Acta Physica Sinica, 2007, 56(11): 6660-6665. doi: 10.7498/aps.56.6660
    [17] Hao Yue, Han Xin-Wei, Zhang Jin-Cheng, Zhang Jin-Feng. Current slump mechanism and its physical model of AlGaN/GaN HEMTs under DC bias. Acta Physica Sinica, 2006, 55(7): 3622-3628. doi: 10.7498/aps.55.3622
    [18] Hu Hui-Yong, Zhang He-Ming, Lü Yi, Dai Xian-Ying, Hou Hui, Ou Jian-Feng, Wang Wei, Wang Xi-Yuan. SiGe HBT large signal equivalent circuit model. Acta Physica Sinica, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
    [19] LUO XIAO-SHU, FANG JIN-QING, QU WAN-LI. CONTROLLING HYPERCHAOS THROUGH LENGTHENING TIME OF AUTOCORRELATION OF SIGNAL. Acta Physica Sinica, 1999, 48(4): 589-595. doi: 10.7498/aps.48.589
    [20] Lin Wei-gan. THE EQUIVALENT CIRCUIT FOR A DISCONTINUITY IN A RECTANGULAR WAVE GUIDE. Acta Physica Sinica, 1956, 12(5): 459-476. doi: 10.7498/aps.12.459
Metrics
  • Abstract views:  3988
  • PDF Downloads:  106
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2023
  • Accepted Date:  04 May 2023
  • Available Online:  22 May 2023
  • Published Online:  20 July 2023

/

返回文章
返回
Baidu
map