搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种简化的时域非连续伽略金阻抗边界算法

杨谦 魏兵 李林茜 邓浩川

引用本文:
Citation:

一种简化的时域非连续伽略金阻抗边界算法

杨谦, 魏兵, 李林茜, 邓浩川

A simplified impedance boundary algorithm in discontinuous Galerkin time-domain

Yang Qian, Wei Bing, Li Lin-Qian, Deng Hao-Chuan
PDF
HTML
导出引用
  • 针对时域非连续伽略金(discontinuous Galerkin time-domain, DGTD)算法中的阻抗边界条件问题开展研究. 阻抗边界条件中的频域算符${\rm{j}}\omega $一般在根号内部, 其在时域数值算法中的实现有一定难度. 另一方面, DGTD算法中数值通量表达式也含有阻抗边界条件, 这也进一步增加了频时转换难度. 为了能给出简化的DGTD阻抗边界算法, 本文首先针对数值通量表达式进行推导, 得到一个特定函数$ {\tilde Z_R} $, 该函数包含频域算符${\rm{j}}\omega $, 函数以外表达式不含频域算符${\rm j}\omega$, 这样就可以仅处理$ {\tilde Z_{\rm{R}}} $的频时转换问题. 由于$ {\tilde Z_{\rm{R}}} $形式复杂, 对$ {\tilde Z_{\rm{R}}} $进行矢量匹配处理, 得到关于${\rm{j}}\omega$的一阶有理分式, 进而得到其时域迭代式. 这一过程简明、易于实施, 还可避开矩阵计算. 本文方案经一维及三维算例验证, 精度很好, 针对特定电磁问题如涂覆层问题可大幅降低计算时间.
    Large-size conductive targets or coated targets are difficult problems in computational electromagnetics. In general, these problems can be classified as multi-scale problems. Multi-scale problems usually consume a large quantity of computational resources. A lot of efforts have been devoted to seeking for fast methods for these problems. When the skin depth is less than the size of a conductive target, the tangential component of the electric field and magnetic field over the surface of the target can be correlated by the surface impedance $ \tilde Z $. The $ \tilde Z $ is usually a complex function of the frequency, and it can be used to formulate an impedance boundary condition (IBC) to describe iterative equations in time domain methods, avoiding the volumetric discretization of the target and improving computational efficiency. This condition is commonly known as the surface impedance boundary condition (SIBC). Similarly, for a conductor whose thickness is in the order of skin depth or less, it also has high resource requirements, if the target is of direct volume discretization. The transmission impedance boundary condition (TIBC) can be utilized instead of a coated object to reduce resource requirements. Therefore, there is no need to discretize volume.There are few studies on the IBC scheme by using the discontinuous Galerkin time-domain (DGTD) method. Li et al. (Li P, Shi Y, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 5686; Li P, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 3065 ; Li P, Jiang L J, Bağcι H 2018 IEEE Trans. Antennas Propag. 66 3590 ) discussed the IBC scheme by using the DGTD, which involves complex matrix operations in the processing of IBC. In the DGTD method, numerical flux is used to transmit data between neighboring elements, and the key to the IBC scheme in DGTD is how to handle numerical flux. We propose a DGTD method with a simple form and matrix-free IBC scheme. The key to dealing with IBC in DGTD is numerical flux. Unlike the way in the literature, the impedance $ \tilde Z $ is not approximated by rational functions in our study. A specfic function $ {\tilde Z_R} $ obtained after the derivation in this work is approximated by rational functions in the Laplace domain through using the vector-fitting (VF) method, and its time-domain iteration scheme is given. This approach avoids matrix operations. The TIBC and SIBC processing schemes are also given. The advantage of the proposed method are that the upwind flux’s standard coefficients are retained and the complex frequency-time conversion problem is implemented by the vector-fitting method. The one-dimensional and three-dimensional examples also show the accuracy and effectiveness of our proposed method in this work.
      通信作者: 杨谦, qyang@xidian.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61901324, 62001345)、中国博士后科学基金(批准号: 2019M653548, 2019M663928XB)、电波环境特性及模化技术国防科技重点实验室基金(批准号: 201903002)、电磁散射重点实验室基金(批准号: 61424090111)和中央高校基本科研业务费(批准号: XJS200501, XJS200507, JB200501)资助的课题.
      Corresponding author: Yang Qian, qyang@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61901324, 62001345), the China Postdoctoral Science Foundation (Grant Nos. 2019M653548, 2019M663928 XB), the Foundation of National Key Laboratory of Electromagnetic Environment, China (Grant No. 201903002), the Foundation of the Science and Technology on Electromagnetic Scattering Laboratory, China (Grant No. 61424090111), and the Fundamental Research Funds for the Central Universities of China (Grant Nos. XJS200501, XJS200507, JB200501).
    [1]

    Senior T 1960 Appl. Sci. Res. 8 418Google Scholar

    [2]

    Feliziani M 2011 IEEE Trans. Electromagn. Compat. 54 299Google Scholar

    [3]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Electromagn. Compat. 56 385Google Scholar

    [4]

    Hanson G W 2008 J. Appl. Phys. 103 064302Google Scholar

    [5]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Antennas Propag. 61 6107Google Scholar

    [6]

    Shapoval O V, Gomez-Diaz J S, Perruisseau-Carrier J, Mosig J R, Nosich A I 2013 IEEE Trans. Terahertz Sci. Technol. 3 666Google Scholar

    [7]

    da Costa K Q, Dmitriev V, Nascimento C M, Silvano G L 2014 Microwave Opt. Technol. Lett. 56 1019Google Scholar

    [8]

    Beggs J H, Luebbers R J, Yee K S, Kunz K S 1992 IEEE Trans. Antennas Propag. 40 49Google Scholar

    [9]

    oh K S, Schutt-Aine J E 1995 IEEE Trans. Antennas Propag. 43 660Google Scholar

    [10]

    Kobidze G 2010 IEEE Trans. Antennas Propag. 58 2394Google Scholar

    [11]

    Gustavsen B, Semlyen A 1999 IEEE Trans. Power Delivery 14 1052Google Scholar

    [12]

    Yi M, Ha M, Qian Z, Aydiner A, Swaminathan M 2013 IEEE Trans. Microwave Theory Tech. 61 4029Google Scholar

    [13]

    Glisson A W 1992 Radio Sci. 27 935Google Scholar

    [14]

    Yan S, Jin J M 2013 IEEE Trans. Antennas Propag. 61 5533Google Scholar

    [15]

    Ylä-Oijala P, Kiminki S P, Järvenpää S 2010 IEEE Trans. Antennas Propag. 58 3997Google Scholar

    [16]

    Gyselinck J, Dular P, Geuzaine C, Sabariego R 2009 IEEE Trans. Magn. 45 1280Google Scholar

    [17]

    Li P, Shi Y, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 5686Google Scholar

    [18]

    Li P, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 3065Google Scholar

    [19]

    Li P, Jiang L J, Bağcı H 2018 IEEE Trans. Antennas Propag. 66 3590Google Scholar

    [20]

    Wang P, Shi Y, Tian C Y, Li L 2018 IEEE Antennas Wirel. Propag. Lett. 17 2169Google Scholar

  • 图 1  半空间示意图

    Fig. 1.  Plane wave incident on a lossy dielectric half-space.

    图 2  虚拟单元

    Fig. 2.  Virtual element.

    图 3  SIBC($ {\tilde Z_R} $)

    Fig. 3.  SIBC ($ {\tilde Z_R} $).

    图 4  薄涂层示意图

    Fig. 4.  A conductive object with thin sheet.

    图 5  TIBC ($ {\tilde Z_R} $)

    Fig. 5.  TIBC ($ {\tilde Z_R} $).

    图 6  对于一维SIBC算例, 反射波及入射波时域数据

    Fig. 6.  Incident wave and reflected wave for one-dimensional SIBC example.

    图 7  对于一维SIBC算例, 反射系数幅值

    Fig. 7.  Magnitude of the reflection coefficient for one-dimensional SIBC example.

    图 8  对于一维SIBC算例, 反射系数相位

    Fig. 8.  Phase of the reflection coefficient for one-dimensional SIBC example.

    图 9  对于一维TIBC算例, 反射波及入射波时域数据

    Fig. 9.  Incident wave and reflected wave for one-dimensional TIBC example.

    图 10  对于一维TIBC算例, 反射系数幅值

    Fig. 10.  Magnitude of the reflection coefficient for one-dimensional TIBC example.

    图 11  对于一维TIBC算例, 反射系数相位

    Fig. 11.  Phase of the reflection coefficient for one-dimensional TIBC example.

    图 12  单站RCS结果

    Fig. 12.  Monostatic RCS.

    图 13  涂覆球

    Fig. 13.  Coated sphere.

    图 14  涂覆球单站RCS结果

    Fig. 14.  Monostatic RCS.

    表 1  数值通量系数表达式

    Table 1.  Coefficients of numerical flux.

    通量系数
    $ k_E^e $$ k_H^e $$ v_H^e $$ v_E^e $
    迎风通量表达式(upwind flux) $\dfrac{{{{\tilde Y}^{e + }}}}{{{Y^e} + {{\tilde Y}^{e + }}}}$ $\dfrac{{{{\tilde Z}^{e + }}}}{{{Z^e} + {{\tilde Z}^{e + }}}}$ $\dfrac{1}{{{Y^e} + {{\tilde Y}^{e + }}}}$ $\dfrac{1}{{{Z^e} + {{\tilde Z}^{e + }}}}$
    下载: 导出CSV

    表 2  计算参数

    Table 2.  Calculation parameters.

    离散尺度/m四面体数量时间步/(10–11 s)计算时间/min均方根误差/dB
    DGTD (SIBC)0.054020940.328972540.6237
    DGTD (standard)0.054876770.328447610.5836
    下载: 导出CSV

    表 3  计算参数

    Table 3.  Calculation parameters.

    离散尺度/m四面体数量时间步/(10–11 s)计算时间/min均方根误差/dB
    0.054020940.328972550.8782
    下载: 导出CSV
    Baidu
  • [1]

    Senior T 1960 Appl. Sci. Res. 8 418Google Scholar

    [2]

    Feliziani M 2011 IEEE Trans. Electromagn. Compat. 54 299Google Scholar

    [3]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Electromagn. Compat. 56 385Google Scholar

    [4]

    Hanson G W 2008 J. Appl. Phys. 103 064302Google Scholar

    [5]

    Nayyeri V, Soleimani M, Ramahi O M 2013 IEEE Trans. Antennas Propag. 61 6107Google Scholar

    [6]

    Shapoval O V, Gomez-Diaz J S, Perruisseau-Carrier J, Mosig J R, Nosich A I 2013 IEEE Trans. Terahertz Sci. Technol. 3 666Google Scholar

    [7]

    da Costa K Q, Dmitriev V, Nascimento C M, Silvano G L 2014 Microwave Opt. Technol. Lett. 56 1019Google Scholar

    [8]

    Beggs J H, Luebbers R J, Yee K S, Kunz K S 1992 IEEE Trans. Antennas Propag. 40 49Google Scholar

    [9]

    oh K S, Schutt-Aine J E 1995 IEEE Trans. Antennas Propag. 43 660Google Scholar

    [10]

    Kobidze G 2010 IEEE Trans. Antennas Propag. 58 2394Google Scholar

    [11]

    Gustavsen B, Semlyen A 1999 IEEE Trans. Power Delivery 14 1052Google Scholar

    [12]

    Yi M, Ha M, Qian Z, Aydiner A, Swaminathan M 2013 IEEE Trans. Microwave Theory Tech. 61 4029Google Scholar

    [13]

    Glisson A W 1992 Radio Sci. 27 935Google Scholar

    [14]

    Yan S, Jin J M 2013 IEEE Trans. Antennas Propag. 61 5533Google Scholar

    [15]

    Ylä-Oijala P, Kiminki S P, Järvenpää S 2010 IEEE Trans. Antennas Propag. 58 3997Google Scholar

    [16]

    Gyselinck J, Dular P, Geuzaine C, Sabariego R 2009 IEEE Trans. Magn. 45 1280Google Scholar

    [17]

    Li P, Shi Y, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 5686Google Scholar

    [18]

    Li P, Jiang L J, Bağcι H 2015 IEEE Trans. Antennas Propag. 63 3065Google Scholar

    [19]

    Li P, Jiang L J, Bağcı H 2018 IEEE Trans. Antennas Propag. 66 3590Google Scholar

    [20]

    Wang P, Shi Y, Tian C Y, Li L 2018 IEEE Antennas Wirel. Propag. Lett. 17 2169Google Scholar

  • [1] 杨谦, 魏兵, 李林茜, 邓浩川. 一种强鲁棒性的时域非连续伽略金可穿透薄层算法.  , 2023, 72(8): 080202. doi: 10.7498/aps.72.20222230
    [2] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [3] 黄燕燕, 张旭琳, 杨伟, 王笑冰, 雷蕾, 彭文达, 徐平. 微光学元件宽带光源照明下无色散边界条件探讨.  , 2019, 68(22): 224203. doi: 10.7498/aps.68.20190716
    [4] 林晨森, 陈硕, 肖兰兰. 适用复杂几何壁面的耗散粒子动力学边界条件.  , 2019, 68(14): 140204. doi: 10.7498/aps.68.20190533
    [5] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频.  , 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [6] 杨利霞, 马辉, 施卫东, 施丽娟, 于萍萍. 基于表面阻抗边界条件的等离子体薄涂层电磁散射的时域有限差分分析.  , 2013, 62(3): 034102. doi: 10.7498/aps.62.034102
    [7] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法.  , 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [8] 王龙, 钟易成, 张堃元. 金属/介质涂覆的S形扩压器电磁散射特性.  , 2012, 61(23): 234101. doi: 10.7498/aps.61.234101
    [9] 吴兆春. 导热几何形状反演的变分原理及边界条件的确立.  , 2010, 59(9): 6326-6330. doi: 10.7498/aps.59.6326
    [10] 张旭, 周玉泽, 闭强, 杨兴华, 俎云霄. 有边界条件的忆阻元件模型及其性质.  , 2010, 59(9): 6673-6680. doi: 10.7498/aps.59.6673
    [11] 张燕萍, 赵晓鹏, 保石, 罗春荣. 基于阻抗匹配条件的树枝状超材料吸收器.  , 2010, 59(9): 6078-6083. doi: 10.7498/aps.59.6078
    [12] 谭康伯, 梁昌洪. 高频条件下运动边界的电磁场边界条件.  , 2009, 58(10): 6770-6771. doi: 10.7498/aps.58.6770
    [13] 李 博, 王延申. 可积开边界条件下的q形变玻色子模型.  , 2007, 56(3): 1260-1265. doi: 10.7498/aps.56.1260
    [14] 唐黎明, 王 艳, 王 丹, 王玲玲. 边界条件对介电量子波导中声子输运性质的影响.  , 2007, 56(1): 437-442. doi: 10.7498/aps.56.437
    [15] 张 波. 二维介质柱光子晶体波导吸收边界条件.  , 2005, 54(12): 5677-5682. doi: 10.7498/aps.54.5677
    [16] 梁昌洪, 褚庆昕. 运动边界的电磁场边界条件.  , 2002, 51(10): 2202-2204. doi: 10.7498/aps.51.2202
    [17] 韩一平, 吴振森. 椭球粒子电磁散射的边界条件的讨论.  , 2000, 49(1): 57-60. doi: 10.7498/aps.49.57
    [18] 颜家壬. 边界条件对非传播孤子运动的影响.  , 1995, 44(10): 1571-1576. doi: 10.7498/aps.44.1571
    [19] 刘登云. 含时边界条件和Berry相位.  , 1993, 42(5): 705-710. doi: 10.7498/aps.42.705
    [20] 吴式玉, 周子舫. 边界条件对无序体系本征态的影响.  , 1984, 33(12): 1650-1660. doi: 10.7498/aps.33.1650
计量
  • 文章访问数:  3214
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 修回日期:  2022-12-13
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map