-
With the rapid development of wireless communications, GaN HEMT, which has various advantages of high power density, high electron mobility, and high breakdown threshold, receiving increasing attention. Microwave power amplifiers based on GaN HEMTs are widely used in many fields, such as communication, medical, and detection instruments. In the accurate design of GaN microwave power amplifiers, reliable RF large signal model is vitally important. In this paper, a scalable large-signal model based on EEHEMT model is proposed to describe the properties of multifinger AlGaN/GaN high electron mobility transistor (HEMT) accurately. A series of scaling rules is established for the intrinsic parameters of the device, including drain-source current Ids, input capacitance Cgs and Cgd, which take into account both the gate width of a single finger and the number of gate fingers. With the proposed scalable large-signal model, the performance of the L-band GaN high-efficiency power amplifier with a gate length of 14.4 mm is analyzed. This amplifier demonstrates outstanding performance, with the output power reaching to 46.5 dBm and the drain efficiency arriving at over 70% of the frequency range from 1120 MHz to 1340 MHz. Good agreement between the simulations and experiments is achieved, demonstrating the excellent accuracy of the proposed model. Moreover, the proposed model can further predict the performance of high-order harmonics, providing an effective tool for designing advanced high-power and high-efficiency microwave power amplifiers. Certainly, the EEHEMT model fails to characterize the dynamical behavior induced by trapping and self-heating effects. Thus, for further consideration, scaling models for the thermal resistance and heat capacity need further investigating to broaden the application scope of the proposed model in the case of continuous waves.
-
Keywords:
- AlGaN/GaN HEMTs /
- high electron mobility transistors /
- scalable large-signal model /
- high power amplifier
[1] Mishra U K, Shen L, Kazior T E, Wu Y F 2008 P. IEEE 96 287Google Scholar
[2] Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE T. Microw. Theory 60 1764Google Scholar
[3] Komiak J J 2015 IEEE Microw. Mag. 16 97
[4] Raffo A, Bosi G, Vadalà V, Vannini G 2013 IEEE T. Microw. Theory 62 73
[5] Ayari L, Xiong A, Maziere C, Ouardirhi Z, Gasseling T 2018 91st ARFTG Microwave Measurement Conference Philadelphia, PA, USA, June 15, 2018 p1
[6] Wang C S, Xu Y H, Yu X M, Ren C J, Wang Z S, Lu H Y, Chen T S, Zhang B, Xu R M 2014 IEEE T. Microw. Theory 62 2878Google Scholar
[7] Angelov I, Thorsell M, Kuylenstierna D, Avolio G, Schreurs D, Raffo A, Vannini G 2013 European Microwave Conference Nuremberg, Germany, October 6–10, 2013 p267
[8] Vitanov S, Palankovski V, Maroldt S 2012 IEEE T. Electron Dev. 59 685Google Scholar
[9] Radhakrishna U, Imada T, Palacios T, Antoniadis D 2014 Phys. Status Solidi 11 848Google Scholar
[10] Wen Z, Xu Y H, Wang C S, Zhao X D, Chen Z K, Xu R M 2017 International J. Numer. Model. El. 30 2137Google Scholar
[11] 徐跃杭, 徐锐敏, 李言荣 2017 微波氮化镓功率器件等效电路建模理论与技术 (北京: 科学出版社) 第75页
Xu Y H, Xu R M, Li Y R 2017 Theory and Technology of Equivalent Circuit Modeling for Microwave Gallium Nitride Power Devices (Beijing: Science Press) p75 (in Chinese)
[12] Jarndal A, Kompa G 2007 IEEE T. Electron Dev. 54 2830Google Scholar
[13] Resca D, Santarelli A, Raffo A, Cignani R, Vannini G, Filicori F, Schreurs D M P 2008 IEEE T. Microw. Theory 56 755Google Scholar
[14] Resca D, Raffo A, Santarelli A, Vannini G, Filicori F 2009 IEEE T. Microw. Theory 57 245Google Scholar
[15] Khurgin J, Ding Y J, Jena D 2007 Appl. Phys. Lett. 91 252104Google Scholar
[16] Xu Y H, Fu W L, Wang C S, Ren C J, Lu H Y, Zheng W B, Yu X M, Yan B, Xu R M 2014 J. Electromagnet. Wave. 28 1888Google Scholar
[17] Xu Y H, Wang C S, Sun H, Wen Z, Wu Y Q, Xu R M, Yu X M, Ren C J, Wang Z S, Zhang B, Chen T S, Gao T 2017 IEEE T. Microw. Theory 65 2836Google Scholar
[18] Alexander A, Leckey J 2015 IEEE MTT-S International Microwave Symposium, Phoenix AZ, USA, May 12–22, 2015 p1
[19] Crupi G, Schreurs D 2013 Microwave De-embedding: From Theory to Applications (Amsterdam: Academic Press) pp25–26
[20] 高建军 2007 场效应晶体管射频微波建模技术 (北京: 电子工业出版) 第75—109页
Gao J J 2007 RF Microwave Modeling Technology for Field Effect Transistors (Beijing: Electronic Industry Publishing) pp75–109 (in Chinese)
[21] Lee J W, Lee S, Webb K J 2001 IEEE MTT-S International Microwave Sympsoium Digest Phoenix, AZ, USA, May 20–25, 2001 p679
[22] Curtice W R 1980 IEEE T. Microw. Theory 28 448Google Scholar
[23] 刘乃漳, 张雪冰, 姚若河 2021 70 217301Google Scholar
Liu N Z, Zhang X B, Yao R H 2021 Acta. Phys. Sin 70 217301Google Scholar
-
-
[1] Mishra U K, Shen L, Kazior T E, Wu Y F 2008 P. IEEE 96 287Google Scholar
[2] Pengelly R S, Wood S M, Milligan J W, Sheppard S T, Pribble W L 2012 IEEE T. Microw. Theory 60 1764Google Scholar
[3] Komiak J J 2015 IEEE Microw. Mag. 16 97
[4] Raffo A, Bosi G, Vadalà V, Vannini G 2013 IEEE T. Microw. Theory 62 73
[5] Ayari L, Xiong A, Maziere C, Ouardirhi Z, Gasseling T 2018 91st ARFTG Microwave Measurement Conference Philadelphia, PA, USA, June 15, 2018 p1
[6] Wang C S, Xu Y H, Yu X M, Ren C J, Wang Z S, Lu H Y, Chen T S, Zhang B, Xu R M 2014 IEEE T. Microw. Theory 62 2878Google Scholar
[7] Angelov I, Thorsell M, Kuylenstierna D, Avolio G, Schreurs D, Raffo A, Vannini G 2013 European Microwave Conference Nuremberg, Germany, October 6–10, 2013 p267
[8] Vitanov S, Palankovski V, Maroldt S 2012 IEEE T. Electron Dev. 59 685Google Scholar
[9] Radhakrishna U, Imada T, Palacios T, Antoniadis D 2014 Phys. Status Solidi 11 848Google Scholar
[10] Wen Z, Xu Y H, Wang C S, Zhao X D, Chen Z K, Xu R M 2017 International J. Numer. Model. El. 30 2137Google Scholar
[11] 徐跃杭, 徐锐敏, 李言荣 2017 微波氮化镓功率器件等效电路建模理论与技术 (北京: 科学出版社) 第75页
Xu Y H, Xu R M, Li Y R 2017 Theory and Technology of Equivalent Circuit Modeling for Microwave Gallium Nitride Power Devices (Beijing: Science Press) p75 (in Chinese)
[12] Jarndal A, Kompa G 2007 IEEE T. Electron Dev. 54 2830Google Scholar
[13] Resca D, Santarelli A, Raffo A, Cignani R, Vannini G, Filicori F, Schreurs D M P 2008 IEEE T. Microw. Theory 56 755Google Scholar
[14] Resca D, Raffo A, Santarelli A, Vannini G, Filicori F 2009 IEEE T. Microw. Theory 57 245Google Scholar
[15] Khurgin J, Ding Y J, Jena D 2007 Appl. Phys. Lett. 91 252104Google Scholar
[16] Xu Y H, Fu W L, Wang C S, Ren C J, Lu H Y, Zheng W B, Yu X M, Yan B, Xu R M 2014 J. Electromagnet. Wave. 28 1888Google Scholar
[17] Xu Y H, Wang C S, Sun H, Wen Z, Wu Y Q, Xu R M, Yu X M, Ren C J, Wang Z S, Zhang B, Chen T S, Gao T 2017 IEEE T. Microw. Theory 65 2836Google Scholar
[18] Alexander A, Leckey J 2015 IEEE MTT-S International Microwave Symposium, Phoenix AZ, USA, May 12–22, 2015 p1
[19] Crupi G, Schreurs D 2013 Microwave De-embedding: From Theory to Applications (Amsterdam: Academic Press) pp25–26
[20] 高建军 2007 场效应晶体管射频微波建模技术 (北京: 电子工业出版) 第75—109页
Gao J J 2007 RF Microwave Modeling Technology for Field Effect Transistors (Beijing: Electronic Industry Publishing) pp75–109 (in Chinese)
[21] Lee J W, Lee S, Webb K J 2001 IEEE MTT-S International Microwave Sympsoium Digest Phoenix, AZ, USA, May 20–25, 2001 p679
[22] Curtice W R 1980 IEEE T. Microw. Theory 28 448Google Scholar
[23] 刘乃漳, 张雪冰, 姚若河 2021 70 217301Google Scholar
Liu N Z, Zhang X B, Yao R H 2021 Acta. Phys. Sin 70 217301Google Scholar
Catalog
Metrics
- Abstract views: 3130
- PDF Downloads: 69
- Cited By: 0