-
Laser heterodyne radiometer has the advantages of low cost, small size, and high spectral resolution. It can expand the existing ground carbon measurement network, verify satellite observation results, and provide data coverage outside the satellite observation area. Using the existing laser heterodyne radiometer, is presented a prototype of near-infrared laser heterodyne radiometer based on the erbium-doped fiber amplifier that can realize local oscillator power locking. In the laser heterodyne radiometer a distributed feedback semiconductor laser with a center wavelength of 1.603 μm is used as a local oscillator light source. The erbium-doped fiber amplifier is used to enhance the local oscillator power, and the automatic power control circuit is adopted to lock the output optical power of the erbium-doped fiber amplifier. The baseline slope caused by the change of the local oscillator power is eliminated, and the whole layer atmospheric transmittance spectrum without baseline fitting is measured. The instrument performance of a highly integrated laser heterodyne radiometer based on an erbium-doped fiber amplifier is evaluated in detail, and the atmospheric CO2 transmittance spectrum is measured in the Science Island (31.9°N, 117.2°E) of Hefei. Six groups of atmospheric CO2 transmittance spectra are obtained during the measurement period of one day, which are compared with the simulation results from an atmospheric radiation model, showing that they are consistent with each other. The experimental results show that the application of erbium-doped fiber amplifier can improve the performance of laser heterodyne radiometer, optimize its structure, and provide equipment supplement for realizing unattended long-term atmospheric CO2 concentration observation and building a comprehensive carbon observation network.
-
Keywords:
- laser heterodyne /
- optical design /
- erbium doped fiber amplifier /
- high resolution spectroscopy
[1] 查玲玲, 王薇, 谢宇, 单昌功, 曾祥昱, 孙友文, 殷昊, 胡启后 2022 光谱学与光谱分析 42 1036Google Scholar
Cha L L, Wang W, Xie Y, Shan C G, Zeng X Y, Sun Y W, Yin H, Hu Q H 2022 Spectrosc. Spect. Anal. 42 1036Google Scholar
[2] Wang J, Sun C, Wang G, Zou M, Tan T, Liu K, Chen W, Gao X 2020 Opt. Lasers. Eng. 129 106083Google Scholar
[3] Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X 2019 Opt. Express. 27 9610Google Scholar
[4] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图 2022 71 074204Google Scholar
Li J, Xue Z Y, Liu X H, Wang J J, Wang G S, Liu K, Gao X M, Tan T 2022 Acta Phys. Sin. 71 074204Google Scholar
[5] Lu X, Huang Y, Wu P, Liu D, Ma H, Wang G, Cao Z 2022 Remote Sens. 14 1489Google Scholar
[6] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 70 217801Google Scholar
Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar
[7] Deng H, Li R, Liu H, He Y, Yang C, Li X, Xu Z, Kan R 2022 Opt. Lett. 47 4335Google Scholar
[8] Sappey A, Masterson B, Howell J 2021 Appl. Opt. 61 2697Google Scholar
[9] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 68 064208Google Scholar
Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar
[10] Xue Z, Shen F, Li J, Liu X, Wang J, Wang G, Chen W, Gao X, Tan T 2022 Opt. Express 30 31828Google Scholar
[11] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 69 144201Google Scholar
Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar
[12] Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar
[13] Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar
[14] Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, Souders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 Appl. Phys. B 125 211Google Scholar
[15] Zenevich S, Gazizov I, Churbanov D, Plyashkov Y, Spiridonov M, Talipov R, Rodin A 2021 Remote Sens. 13 2235Google Scholar
[16] 王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)
Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[17] Deng H, Yang C, Xu Z, Li M, Huang A, Yao L, Hu M, Chen B, He Y, Kan R, Liu J 2021 Opt. Express 29 2003Google Scholar
[18] Huang J, Huang Y, Lu X, Liu D, Yuan Z, Qi G, Cao Z 2022 Front. Phys. 10 835189Google Scholar
[19] Hoffmann A, Huebner M, Macleod N, Weidmann D 2018 Opt. Lett. 43 3810Google Scholar
[20] Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar
[21] Nakazawa M 2014 Opt. Rev. 21 862Google Scholar
[22] Shen F, Wang G, Wang J, Tan T, Wang G, Jeseck P, Te Y, Gao X, Chen W 2021 Opt. Lett. 46 3171Google Scholar
-
图 3 EDFA原理图、实物图及激光器输出功率变化图 (a) EDFA原理图(ISO, 光隔离器; EDF, 掺铒光纤; WDM, 波分复用器); (b) EDFA实物图; (c) 激光功率(红色实线), 经自动功率控制锁定后的EDFA输出功率(黑色实线)
Figure 3. Schematic diagram and physical diagram of EDFA, and power variation diagram of laser: (a) The schematic diagram of EDFA (ISO, isolator; EDF, erbium-doped fiber; WDM, wavelength division multiplexer); (b) the physical diagram of EDFA; (c) laser power (red solid line), output power of EDFA locked by automatic power control (black solid line).
图 11 实测大气CO2透过率谱与大气辐射模型模拟结果比较 (a) 大气辐射模型模拟结果; (b)实测大气CO2透过率谱
Figure 11. Comparison between the measured atmospheric transmittance spectrum of CO2 and the simulation results of atmospheric radiation model: (a) The simulation results of atmospheric radiation model; (b) the measured atmospheric transmittance spectrum of CO2.
-
[1] 查玲玲, 王薇, 谢宇, 单昌功, 曾祥昱, 孙友文, 殷昊, 胡启后 2022 光谱学与光谱分析 42 1036Google Scholar
Cha L L, Wang W, Xie Y, Shan C G, Zeng X Y, Sun Y W, Yin H, Hu Q H 2022 Spectrosc. Spect. Anal. 42 1036Google Scholar
[2] Wang J, Sun C, Wang G, Zou M, Tan T, Liu K, Chen W, Gao X 2020 Opt. Lasers. Eng. 129 106083Google Scholar
[3] Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X 2019 Opt. Express. 27 9610Google Scholar
[4] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图 2022 71 074204Google Scholar
Li J, Xue Z Y, Liu X H, Wang J J, Wang G S, Liu K, Gao X M, Tan T 2022 Acta Phys. Sin. 71 074204Google Scholar
[5] Lu X, Huang Y, Wu P, Liu D, Ma H, Wang G, Cao Z 2022 Remote Sens. 14 1489Google Scholar
[6] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 70 217801Google Scholar
Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar
[7] Deng H, Li R, Liu H, He Y, Yang C, Li X, Xu Z, Kan R 2022 Opt. Lett. 47 4335Google Scholar
[8] Sappey A, Masterson B, Howell J 2021 Appl. Opt. 61 2697Google Scholar
[9] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 68 064208Google Scholar
Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar
[10] Xue Z, Shen F, Li J, Liu X, Wang J, Wang G, Chen W, Gao X, Tan T 2022 Opt. Express 30 31828Google Scholar
[11] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 69 144201Google Scholar
Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar
[12] Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar
[13] Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar
[14] Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, Souders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 Appl. Phys. B 125 211Google Scholar
[15] Zenevich S, Gazizov I, Churbanov D, Plyashkov Y, Spiridonov M, Talipov R, Rodin A 2021 Remote Sens. 13 2235Google Scholar
[16] 王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)
Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[17] Deng H, Yang C, Xu Z, Li M, Huang A, Yao L, Hu M, Chen B, He Y, Kan R, Liu J 2021 Opt. Express 29 2003Google Scholar
[18] Huang J, Huang Y, Lu X, Liu D, Yuan Z, Qi G, Cao Z 2022 Front. Phys. 10 835189Google Scholar
[19] Hoffmann A, Huebner M, Macleod N, Weidmann D 2018 Opt. Lett. 43 3810Google Scholar
[20] Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar
[21] Nakazawa M 2014 Opt. Rev. 21 862Google Scholar
[22] Shen F, Wang G, Wang J, Tan T, Wang G, Jeseck P, Te Y, Gao X, Chen W 2021 Opt. Lett. 46 3171Google Scholar
Catalog
Metrics
- Abstract views: 3719
- PDF Downloads: 57
- Cited By: 0