Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer

Huang Yi-Fan Xing Yang-Guang Shen Wen-Jie Peng Ji-Long Dai Shu-Wu Wang Ying Duan Zi-Wen Yan Lei Liu Yue Li Lin

Citation:

Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer

Huang Yi-Fan, Xing Yang-Guang, Shen Wen-Jie, Peng Ji-Long, Dai Shu-Wu, Wang Ying, Duan Zi-Wen, Yan Lei, Liu Yue, Li Lin
PDF
HTML
Get Citation
  • The slit imaging spectrometer is one of the important tools for solar extreme ultraviolet (EUV) spectral imaging detection. However, at present, there is no such instrument load in China. The research of solar physics and space weather in the field of EUV spectral diagnosis mainly depends on foreign instrument data, which seriously restricts the development of related disciplines. The spectral imaging instruments that have been launched internationally have only a spatial resolution of $2''$, and it is difficult to observe the core characteristics of the plasma related to the coronal heating mechanism predicted by the theoretical model. In order to better understand the coupling process between different layers of the sun’s atmosphere, solar physics research requires the observed data with wider spectral coverage. In light of this, we propose and design a sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer operating in a band range of 62–80 nm and 92–110 nm. Compared with the existing instruments, the system can achieve high spatial resolution and spectral resolution, and wide spectral range coverage. Performance evaluation results indicate that the imaging spectrometer’s spatial resolutions in both bands are better than 0.4'', and their spectral resolutions are both better than 0.007 nm, with spectral imaging quality approaching the diffraction limit. The system designed in this work holds significant reference value for developing the first Chinese space-based solar EUV spectroscopic instrument in the future.
      Corresponding author: Xing Yang-Guang, xyg@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205027, 42274208) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15018300).
    [1]

    杨孟飞, 代树武, 王颖, 朱成林, 杨尚斌, 张也驰 2022 中国空间科学技术 42 1Google Scholar

    Yang M F, Dai S W, Wang Y, Zhu C L, Yang S B, Zhang Y C 2022 Chin. Space Sci. Technol. 42 1Google Scholar

    [2]

    颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅 2023 空间科学学报 43 199Google Scholar

    Yan Y H, Deng Y Y, Gan W Q, Ding M D, Tian H, Zhu X S 2023 Chin. J. Space Sci. 43 199Google Scholar

    [3]

    陈鹏飞 2021 中国科学: 物理学 力学 天文学 51 119632Google Scholar

    Chen P F 2021 Sci. Sin. -Phys. Mech. Astron. 51 119632Google Scholar

    [4]

    白先勇, 田晖, 邓元勇, 陈亚杰, 侯振永, 杨子浩, 张志勇, 段帷, 李文显, 郭思璠 2023 空间科学学报 43 406Google Scholar

    Bai X Y, Tian H, Deng Y Y, Chen Y J, Hou Z Y, Yang Z H, Zhang Z Y, Duan W, Li W X, Guo S F 2023 Chin. J. Space Sci. 43 406Google Scholar

    [5]

    Domingo V, Fleck B, Poland A I 1995 Sol. Phys. 162 1Google Scholar

    [6]

    Wilhelm K, Axford W I, Curdt W, Gabriel A H, Grewing M, Huber M C E, Jordan S D, Kuehne M, Lemaire P, Marsch E 1995 Sol. Phys. 162 189Google Scholar

    [7]

    Harrison R A, Sawyer E C, Carter M K, et al. 1995 Sol. Phys. 162 233Google Scholar

    [8]

    Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Sol. Phys. 243 3Google Scholar

    [9]

    Culhane J L, Harra L K, James A M, et al. 2007 Sol. Phys. 243 19Google Scholar

    [10]

    Brosius J W, Daw A N, Rabin D M 2014 Astrophys. J. 790 1Google Scholar

    [11]

    Müller D, St Cyr O C, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar

    [12]

    Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar

    [13]

    Marirrodriga C G, Pacros A, Strandmoe S, et al. 2021 Astron. Astrophys. 646 A121Google Scholar

    [14]

    Li C, Fang C, Li Z, et al. 2022 Sci. China-Phys. Mech. Astron. 65 289602Google Scholar

    [15]

    Gan W Q, Zhu C, Deng Y Y, et al. 2019 Res. Astron. Astrophys. 19 156Google Scholar

    [16]

    Zhang P, Hu X Q, Lu Q F, Zhu A J, Lin M Y, Sun L, Chen L, Xu N 2022 Adv. Atmos. Sci. 39 1Google Scholar

    [17]

    Chen B, Zhang X X, He L P, et al. 2022 Light-Sci. Appl. 11 329Google Scholar

    [18]

    Bai X Y, Tian H, Deng Y Y, et al. 2023 Res. Astron. Astrophys. 23 065014Google Scholar

    [19]

    Tian H 2017 Res. Astron. Astrophys. 17 3Google Scholar

    [20]

    Poletto L, Thomas R J 2004 Appl. Opt. 43 2029Google Scholar

    [21]

    Poletto L, Gasparotto A, Tondello G, Thomas R J 2004 UV and Gamma-Ray Space Telescope Systems Glasgow, United Kingdom, June 21–25, 2004 p898

    [22]

    Larruquert J I, Keski-Kuha R A M 2000 Appl. Opt. 39 1537Google Scholar

    [23]

    王丽辉, 何玲平, 王孝坤, 尼启良, 陈波 2008 光学精密工程 16 42Google Scholar

    Wang L H, He L P, Wang X K, Ni Q L, Chen B 2008 Opt. Precis. Eng. 16 42Google Scholar

    [24]

    汪毓明, 季海生, 王亚敏, 等 2020 中国科学: 技术科学 50 1243Google Scholar

    Wang Y M, Ji H S, Wang Y M, et al. 2020 Sci. Sin. Technol. 50 1243Google Scholar

    [25]

    林隽, 黄善杰, 李燕, 等 2021 空间科学学报 41 183Google Scholar

    Liu J, Huang S J, Li Y, et al. 2021 Chin. J. Space Sci. 41 183Google Scholar

    [26]

    季海生, 汪毓明, 汪景琇 2019 中国科学: 物理学 力学 天文学 49 059605Google Scholar

    Ji H S, Wang Y M, Wang J X 2019 Sci. Sin. Phys. Mech. Astron. 49 059605Google Scholar

    [27]

    杨孟飞, 汪景琇, 王赤, 等 2023 科学通报 68 859Google Scholar

    Yang M F, Wang J X, Wang C, et al. 2023 Chin. Sci. Bull. 68 859Google Scholar

    [28]

    邓元勇, 周桂萍, 代树武, 等 2023 科学通报 68 298Google Scholar

    Deng Y Y, Zhou G P, Dai S W, et al. 2023 Chin. Sci. Bull. 68 298Google Scholar

  • 图 1  太阳大气温度随表面高度变化曲线. 图上标注了本文设计的系统工作波段覆盖的极紫外强辐射谱线[19]

    Figure 1.  Curve of solar atmospheric temperature versus surface height. The EUV strong emission lines covered by our design are marked on the figure[19].

    图 2  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪工作原理图

    Figure 2.  Operation principal diagram of sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer

    图 3  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪的光线追迹模型

    Figure 3.  Ray-tracing model for sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    图 4  成像光谱仪系统的设计流程

    Figure 4.  Design flow process for imaging spectrometer system

    图 5  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学布局图

    Figure 5.  Optical layout of sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    图 6  TVLS光栅 (a) 基底表面矢高图; (b) 刻线密度分布曲线图

    Figure 6.  TVLS grating: (a) The substrate surface sag map; (b) the curve of the ruling density distribution.

    图 7  光线追迹结果 (a), (b) 不同离轴视场下RMS点列图半径随波长的变化; (c), (d) 不同波长下RMS点列图半径随视场的变化

    Figure 7.  Ray tracing results: (a), (b) RMS spots radii versus wavelengths under different off-axis FOV; (c), (d) RMS spots radii versus FOV in the different wavelengths.

    图 8  光学系统在不同波长处的调制传递函数 (a) λ = 62 nm; (b) λ = 80 nm; (c) λ = 92 nm; (d) λ = 110 nm

    Figure 8.  MTFs of optical system under different wavelengths: (a) λ = 62 nm; (b) λ = 80 nm; (c) λ = 92 nm; (d) λ = 110 nm.

    图 9  系统像元空间分辨率评价 (a) 垂直狭缝方向的像元空间分辨率; (b) 62—80 nm波段平行狭缝方向的像元空间分辨率; (c) 92—110 nm波段平行狭缝方向的像元空间分辨率

    Figure 9.  System spatial plate scale evaluation: (a) Spatial plate scale perpendicular to the slit; (b) spatial plate scale parallel to the slit in 62–80 nm wavelengths; (c) spatial plate scale parallel to the slit in 92–110 nm wavelengths.

    图 10  系统光谱分辨率评价 (a) 62—80 nm波段的光谱分辨率; (b) 92—110 nm波段的光谱分辨率

    Figure 10.  System spectral resolution evaluation: (a) Spectral resolution in 62–80 nm wavelengths; (b) spectral resolution in 92–110 nm wavelengths.

    图 11  反射膜层、滤光片、TVLS光栅效率和探测器量子效率随波长的变化曲线 (a) 热压B4C单层膜的反射率曲线; (b) 厚度为150 nm铝滤光片的透过率曲线; (c) 光栅效率; (d) 探测器量子效率

    Figure 11.  Curves of reflective film, filter, TVLS grating efficiency and detector quantum efficiency change with wavelength: (a) Reflectance curve of hot-pressed B4C single-layer film; (b) transmission curve of Al filter with thickness of 150 nm; (c) grating efficiency; (d) detector quantum efficiency.

    图 12  系统有效面积随波长的变化曲线 (a) 本文设计的系统, 红色加粗的曲线为系统观测波段内的有效面积; (b) SPICE

    Figure 12.  Curves of system effective area change with wavelength: (a) Our design, red bold curves represent the effective area within the observed wavelength range of the system; (b) SPICE.

    图 13  光谱(Smile)畸变和空间(Keystone)畸变 (a) 不同波长的Smile畸变; (b) 62—80 nm波段不同视场的Keystone畸变; (c) 92—110 nm波段不同视场的Keystone畸变

    Figure 13.  Spectral (Smile) distortion and spatial (Keystone) distortion: (a) Smile distortion of different wavelengths; (b) Keystone distortion of different field of view in 62–80 nm wavelengths; (c) Keystone distortion of different field of view in 92–110 nm wavelengths.

    表 1  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪技术指标

    Table 1.  Specifications of the sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    Performance parameters Design values
    Satellite orbit Dawn-dusk solar
    synchronous orbit
    Entrance aperture/mm2 156 × 156
    Slit FOV/('' ) 4.8
    Wavelength range/nm 62—80 & 92—110 & 46—55 (2nd order)
    Spectral resolution/nm ≤ 0.007
    Spatial plate scale/(('' )·pixel–1) ≤ 0.5
    Spatial resolution/('' ) ≤ 1.0
    System focal length/mm 11000
    Optical volume/mm3 ≤ 2800 × 500 × 450
    Pixel size of detector/μm 15 (1536 × 1536)
    DownLoad: CSV

    表 2  亚角秒空间分辨的太阳极紫外宽波段成像光谱仪技术指标和元件参数

    Table 2.  Specifications and optical element parameters of sub-angular second spatial resolved solar extreme ultraviolet broadband imaging spectrometer.

    Specification
    Wavelength range@SW/nm 62—80
    Wavelength range@LW/nm 92—110 & 46—55
    (2nd order)
    Spectral resolution@SW/nm 0.00615
    Spectral resolution@LW/nm 0.00642
    Spatial plate scale
    @SW/(('' )·pixel–1)
    0.340(@71 nm)
    Spatial plate scale
    @LW/(('' )·pixel–1)
    0.382(@101 nm)
    System focal length/mm 11000
    Optical volume/mm3 2600 × 420 × 400
    Detector/μm 15 (1536 × 1536)
    Telescope design
    Aperture/mm2 156 × 156
    RT/mm 4320.025
    Conic –1
    $\varDelta $/mm 120
    Slit design
    Slits width/('' ) 0.28, 1, 2, 40
    Slits length/('' ) 288
    Raster coverage/('' ) ±144
    TVLS grating design
    m +1 order
    1/d0/mm–1 1500
    β 5.177×@SW;
    5.261×@LW
    i/(°) 0.909
    rA/mm 440.667
    R/mm 735.545
    ρ/mm 737.138
    b2 0.0349
    Groove density/(lines·mm–1) 1500 ± 4
    Ruling area/mm2 36 × 36
    Two independent detectors design
    Wavelength range/nm Tilt angle/(°)
    62—80 15.259
    92—110 17.824
    DownLoad: CSV

    表 3  系统关键元件的公差容限

    Table 3.  Tolerance limits of key components of the system.

    Component Tolerance items Values of tolerances
    Primary mirror Surface irregularity (RMS) λ/20
    (λ = 632.8 nm)
    Conic ±0.005
    Radius of curvature/mm ±3.6
    Microroughness (RMS)/nm 0.4
    Element decenter/μm ±50
    Element tilt/('' ) ±15
    TVLS grating Substrate irregularity (RMS) λ/30
    (λ = 632.8 nm)
    Line density/
    (groove·mm–1)
    ±0.65
    Radius of curvature/mm ±0.3
    Microroughness (RMS)/nm 0.8
    Element decenter/μm ±20
    Element tilt/('' ) ±60
    Slit
    assembly
    Element decenter/μm ±20
    Element tilt/(°) ±0.03
    DownLoad: CSV
    Baidu
  • [1]

    杨孟飞, 代树武, 王颖, 朱成林, 杨尚斌, 张也驰 2022 中国空间科学技术 42 1Google Scholar

    Yang M F, Dai S W, Wang Y, Zhu C L, Yang S B, Zhang Y C 2022 Chin. Space Sci. Technol. 42 1Google Scholar

    [2]

    颜毅华, 邓元勇, 甘为群, 丁明德, 田晖, 朱小帅 2023 空间科学学报 43 199Google Scholar

    Yan Y H, Deng Y Y, Gan W Q, Ding M D, Tian H, Zhu X S 2023 Chin. J. Space Sci. 43 199Google Scholar

    [3]

    陈鹏飞 2021 中国科学: 物理学 力学 天文学 51 119632Google Scholar

    Chen P F 2021 Sci. Sin. -Phys. Mech. Astron. 51 119632Google Scholar

    [4]

    白先勇, 田晖, 邓元勇, 陈亚杰, 侯振永, 杨子浩, 张志勇, 段帷, 李文显, 郭思璠 2023 空间科学学报 43 406Google Scholar

    Bai X Y, Tian H, Deng Y Y, Chen Y J, Hou Z Y, Yang Z H, Zhang Z Y, Duan W, Li W X, Guo S F 2023 Chin. J. Space Sci. 43 406Google Scholar

    [5]

    Domingo V, Fleck B, Poland A I 1995 Sol. Phys. 162 1Google Scholar

    [6]

    Wilhelm K, Axford W I, Curdt W, Gabriel A H, Grewing M, Huber M C E, Jordan S D, Kuehne M, Lemaire P, Marsch E 1995 Sol. Phys. 162 189Google Scholar

    [7]

    Harrison R A, Sawyer E C, Carter M K, et al. 1995 Sol. Phys. 162 233Google Scholar

    [8]

    Kosugi T, Matsuzaki K, Sakao T, et al. 2007 Sol. Phys. 243 3Google Scholar

    [9]

    Culhane J L, Harra L K, James A M, et al. 2007 Sol. Phys. 243 19Google Scholar

    [10]

    Brosius J W, Daw A N, Rabin D M 2014 Astrophys. J. 790 1Google Scholar

    [11]

    Müller D, St Cyr O C, Zouganelis I, et al. 2020 Astron. Astrophys. 642 A1Google Scholar

    [12]

    Anderson M, Appourchaux T, Auchère F, et al. 2020 Astron. Astrophys. 642 A14Google Scholar

    [13]

    Marirrodriga C G, Pacros A, Strandmoe S, et al. 2021 Astron. Astrophys. 646 A121Google Scholar

    [14]

    Li C, Fang C, Li Z, et al. 2022 Sci. China-Phys. Mech. Astron. 65 289602Google Scholar

    [15]

    Gan W Q, Zhu C, Deng Y Y, et al. 2019 Res. Astron. Astrophys. 19 156Google Scholar

    [16]

    Zhang P, Hu X Q, Lu Q F, Zhu A J, Lin M Y, Sun L, Chen L, Xu N 2022 Adv. Atmos. Sci. 39 1Google Scholar

    [17]

    Chen B, Zhang X X, He L P, et al. 2022 Light-Sci. Appl. 11 329Google Scholar

    [18]

    Bai X Y, Tian H, Deng Y Y, et al. 2023 Res. Astron. Astrophys. 23 065014Google Scholar

    [19]

    Tian H 2017 Res. Astron. Astrophys. 17 3Google Scholar

    [20]

    Poletto L, Thomas R J 2004 Appl. Opt. 43 2029Google Scholar

    [21]

    Poletto L, Gasparotto A, Tondello G, Thomas R J 2004 UV and Gamma-Ray Space Telescope Systems Glasgow, United Kingdom, June 21–25, 2004 p898

    [22]

    Larruquert J I, Keski-Kuha R A M 2000 Appl. Opt. 39 1537Google Scholar

    [23]

    王丽辉, 何玲平, 王孝坤, 尼启良, 陈波 2008 光学精密工程 16 42Google Scholar

    Wang L H, He L P, Wang X K, Ni Q L, Chen B 2008 Opt. Precis. Eng. 16 42Google Scholar

    [24]

    汪毓明, 季海生, 王亚敏, 等 2020 中国科学: 技术科学 50 1243Google Scholar

    Wang Y M, Ji H S, Wang Y M, et al. 2020 Sci. Sin. Technol. 50 1243Google Scholar

    [25]

    林隽, 黄善杰, 李燕, 等 2021 空间科学学报 41 183Google Scholar

    Liu J, Huang S J, Li Y, et al. 2021 Chin. J. Space Sci. 41 183Google Scholar

    [26]

    季海生, 汪毓明, 汪景琇 2019 中国科学: 物理学 力学 天文学 49 059605Google Scholar

    Ji H S, Wang Y M, Wang J X 2019 Sci. Sin. Phys. Mech. Astron. 49 059605Google Scholar

    [27]

    杨孟飞, 汪景琇, 王赤, 等 2023 科学通报 68 859Google Scholar

    Yang M F, Wang J X, Wang C, et al. 2023 Chin. Sci. Bull. 68 859Google Scholar

    [28]

    邓元勇, 周桂萍, 代树武, 等 2023 科学通报 68 298Google Scholar

    Deng Y Y, Zhou G P, Dai S W, et al. 2023 Chin. Sci. Bull. 68 298Google Scholar

  • [1] Shen Xiao-Yang, Cheng Yi-Hao, Xia Lin. Design of compact high resolution imaging system for cold atom experiments. Acta Physica Sinica, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [2] Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang. High precision ray tracing method for space camera in optical design. Acta Physica Sinica, 2023, 72(8): 084201. doi: 10.7498/aps.72.20222463
    [3] Hou Chen-Yang, Meng Fan-Chao, Zhao Yi-Ming, Ding Jin-Min, Zhao Xiao-Ting, Liu Hong-Wei, Wang Xin, Lou Shu-Qin, Sheng Xin-Zhi, Liang Sheng. “Machine micro/nano optics scientist”: Application and development of artificial intelligence in micro/nano optical design. Acta Physica Sinica, 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [4] Xing Yang-Guang, Peng Ji-Long, Duan Zi-Wen, Yan Lei, Li Lin, Liu Yue. Tomographic imaging for solar extreme ultraviolet He II 30.4 nm and spectral data inversion. Acta Physica Sinica, 2022, 71(15): 159501. doi: 10.7498/aps.71.20220084
    [5] Qiu Yi-Geng, Fan Yuan-Yuan, Yan Bo-Xia, Wang Yan-Wei, Wu Yi-Hang, Han Zhe, Qi Yan, Lu Ping. Design and experiment of light field shaping system for three-dimensional extended light source used in photoacoustic spectrometer. Acta Physica Sinica, 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [6] Xu Xiang-Xin, Chang Jun, Wu Chu-Han, Song Da-Lin. Local hybrid optical encryption system based on double random phase encoding. Acta Physica Sinica, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [7] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [8] Feng Shuai, Chang Jun, Niu Ya-Jun, Mu Yu, Liu Xin. A method of designing asymmetric double-sided off-axis aspheric mirror detection compensation zoom light path. Acta Physica Sinica, 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [9] Xu Ping, Yang Wei, Zhang Xu-Lin, Luo Tong-Zheng, Huang Yan-Yan. Two-dimensional distribution design of micro-prism for partial integrated light guide plate. Acta Physica Sinica, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [10] Cao Chao, Liao Zhi-Yuan, Bai Yu, Fan Zhen-Jie, Liao Sheng. Initial configuration design of off-axis reflective optical system based on vector aberration theory. Acta Physica Sinica, 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [11] Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [12] Shen Ben-Lan, Chang Jun, Wang Xi, Niu Ya-Jun, Feng Shu-Long. Design of the active zoom system with three-mirror. Acta Physica Sinica, 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [13] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation. Acta Physica Sinica, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [14] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [15] Pei Lin-Lin, Lü Qun-Bo, Wang Jian-Wei, Liu Yang-Yang. Optical system design of the coded aperture imaging spectrometer. Acta Physica Sinica, 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [16] Ren Hong-Liang. Design and error analysis for optical tweezers based on finite conjugate microscope. Acta Physica Sinica, 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [17] Si Fu-Qi, Xie Pin-Hua, Klaus-Peter Heue, Liu-Cheng, Peng Fu-Min, Liu Wen-Qing. Hyperspectral imaging differential optical absorption spectroscopy. Acta Physica Sinica, 2008, 57(9): 6018-6023. doi: 10.7498/aps.57.6018
    [18] Dong Ke-Yan, Sun Qiang, Li Yong-Da, Zhang Yun-Cui, Wang Jian, Ge Zhen-Jie, Sun Jin-Xia, Liu Jian-Zhuo. Design of a refractive/diffractive hybrid infrared bifocal optical system. Acta Physica Sinica, 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [19] Wang Fang, Zhu Qi-Hua, Jiang Dong-Bin, Zhang Qing-Quan, Deng Wu, Jing Feng. Optimization of optical design of the master amplifier in multi-pass off-axis amplification system. Acta Physica Sinica, 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
    [20] Sun Qiang, Yu Bin, Wang Zhao-Qi, Mu Guo-Guang, Lu Zhen-Wu. Study on hyperspectral detection system with the harmonic diffractive element in infrared dual-band. Acta Physica Sinica, 2004, 53(3): 756-761. doi: 10.7498/aps.53.756
Metrics
  • Abstract views:  2433
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  13 September 2023
  • Accepted Date:  21 October 2023
  • Available Online:  01 November 2023
  • Published Online:  05 February 2024

/

返回文章
返回
Baidu
map