-
Micro/nano optical materials and devices are the key to many optical fields such as optical communication, optical sensing, biophotonics, laser, and quantum optics, etc. At present, the design of micro/nano optics mainly relies on the numerical methods such as Finite-difference time-domain (FDTD), Finite element method (FEM) and Finite difference method (FDM). These methods bottleneck the current micro/nano optical design because of their dependence on computational resources, low innovation efficiency, and difficulties in obtaining global optimal design. Artificial intelligence (AI) has brought a new paradigm of scientific research: AI for Science, which has been successfully applied to chemistry, materials science, quantum mechanics, and particle physics. In the area of micro/nano design AI has been applied to the design research of chiral materials, power dividers, microstructured optical fibers, photonic crystal fibers, chalcogenide solar cells, plasma waveguides, etc. According to the characteristics of the micro/nano optical design objects, the datasets can be constructed in the form of parameter vectors for complex micro/nano optical designs such as hollow core anti-resonant fibers with multi-layer nested tubes, and in the form of images for simple micro/nano optical designs such as 3dB couplers. The constructed datasets are trained with artificial neural network, deep neural network and convolutional neural net algorithms to fulfill the regression or classification tasks for performance prediction or inverse design of micro/nano optics. The constructed AI models are optimized by adjusting the performance evaluation metrics such as mean square error, mean absolute error, and binary cross entropy. In this paper, the application of AI in micro/nano optics design is reviewed, the application methods of AI in micro/nano optics are summarized, and the difficulties and future development trends of AI in micro/nano optics research are analyzed and prospected.
-
Keywords:
- micro/nano optics /
- optical design /
- artificial intelligence /
- intelligent photonics
[1] 李涛, 祝世宁 2022 科学观察 17 63Google Scholar
Li T, Zhu S N 2022 Science Focus 17 63Google Scholar
[2] Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y 2016 Opt. Express 24 6586Google Scholar
[3] Hu Y, Yu M, Zhu D, et al. 2021 Nature 599 587Google Scholar
[4] Ham B S 2020 Sci. Rep. -UK 10 7309Google Scholar
[5] Xie C, Zou X, Zou F, Yan L, Pan W, Zhang Y 2021 Chin. Phys. B 30 120703Google Scholar
[6] Shibayama J, Kawai H, Yamauchi J, Nakano H 2019 Opt. Commun. 452 360Google Scholar
[7] Chen S, Xie Z, Ye H, Wang X, Guo Z, He Y, Li Y, Yuan X, Fan D 2021 Light-Sci. Appl. 10 222Google Scholar
[8] De M, Gangopadhyay T K, Singh V K 2019 Sensors 19 464Google Scholar
[9] Portosi V, Laneve D, Falconi M C, Prudenzano F 2019 Sensors 19 1892Google Scholar
[10] Yu R, Chen Y, Shui L, Xiao L 2020 Sensors 20 2996Google Scholar
[11] Meinecke S, Drzewietzki L, Weber C, Lingnau B, Breuer S, Lüdge K 2019 Sci. Rep. -UK 9 1783Google Scholar
[12] Fan Y, van Rees A, van der Slot P, Mak J, Oldenbeuving R M, Hoekman M, Geskus D, Roeloffzen C, Boller K J 2020 Opt. Express 28 21713Google Scholar
[13] Li W, Coppens Z J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar
[14] Bai J, Yao Y 2021 ACS Nano 15 14263Google Scholar
[15] Ashalley E, Acheampong K, Besteiro L V, Yu P, Neogi A, Govorov A O, Wang Z M 2020 Photonics Res. 8 1213Google Scholar
[16] Chen Z, Zheng S, Tong Z, Yuan X 2022 Optica 9 677Google Scholar
[17] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar
[18] Wang S, Wu P C, Su V, et al. 2018 Nat. Nanotechnol. 13 227Google Scholar
[19] Getman F, Makarenko M, Burguete-Lopez A, Fratalocchi A 2021 Light-Sci. Appl. 10 47Google Scholar
[20] Wu J, Yang Y, Qu Y, Jia L, Zhang Y, Xu X, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2020 Small 16 1906563Google Scholar
[21] Chen Y, Yin Y, Ma L, Schmidt O G 2021 Adv. Opt. Mater. 9 2100143Google Scholar
[22] Shlager K L, Schneider J B 1995 IEEE Antennas Propag. Mag. 37 39Google Scholar
[23] Dhatt G, Lefrançois E, Touzot G 2012 Finite Element Method (Hoboken: John Wiley & Sons) p1
[24] Zuazua E 2005 SIAM Rev. 47 197Google Scholar
[25] Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W, Liu Y 2021 Nat. Photonics 15 77Google Scholar
[26] Goh G B, Hodas N O, Vishnu A 2017 J. Comput. Chem. 38 1291Google Scholar
[27] Dral P O 2020 J. Phys. Chem. Lett. 11 2336Google Scholar
[28] Paruzzo F M, Hofstetter A, Musil F, De S, Ceriotti M, Emsley L 2018 Nat. Commun. 9 4501Google Scholar
[29] von Lilienfeld O A, Burke K 2020 Nat. Commun. 11 4895Google Scholar
[30] Mater A C, Coote M L 2019 J. Chem. Inf. Model. 59 2545Google Scholar
[31] Schweidtmann A M, Clayton A D, Holmes N, Bradford E, Bourne R A, Lapkin A A 2018 Chem. Eng. J. 352 277Google Scholar
[32] Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong S P 2020 Adv. Energy Mater. 10 1903242Google Scholar
[33] Schleder G R, Padilha A C M, Acosta C M, Costa M, Fazzio A 2019 J. Phys. Mater. 2 32001Google Scholar
[34] Schmidt J, Marques M R G, Botti S, Marques M A L 2019 npj Comput. Mater. 5 83Google Scholar
[35] Zhang Y, Ling C 2018 npj Comput. Mater. 4 25Google Scholar
[36] Bleiziffer P, Schaller K, Riniker S 2018 J. Chem. Inf. Model. 58 579Google Scholar
[37] Carrasquilla J 2020 Adv. Phys. -X 5 1797528Google Scholar
[38] Schütt K T, Gastegger M, Tkatchenko A, Müller K R, Maurer R J 2019 Nat. Commun. 10 5024Google Scholar
[39] von Lilienfeld O A, Müller K, Tkatchenko A 2020 Nat. Rev. Chem. 4 347Google Scholar
[40] 沈培鑫, 蒋文杰, 李炜康, 鲁智德, 邓东灵 2021 70 140302Google Scholar
Shen P X, Jiang W J, Li W K, Lu Z D, Deng D L 2021 Acta Phys. Sin. 70 140302Google Scholar
[41] Bourilkov D 2019 Int. J. Mod. Phys. A 34 1930019Google Scholar
[42] Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L, Carleo G 2019 Rev. Mod. Phys. 91 45002Google Scholar
[43] Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D, Himmel A, Aurisano A, Terao K, Wongjirad T 2018 Nature 560 41Google Scholar
[44] Shlomi J, Battaglia P, Vlimant J 2021 Mach. Learn. :Sci. Technol. 2 21001Google Scholar
[45] Vázquez-Escobar J, Hernández J M, Cárdenas-Montes M 2021 Comput. Phys. Commun. 268 108100Google Scholar
[46] Li Y, Xu Y, Jiang M, Li B, Han T, Chi C, Lin F, Shen B, Zhu X, Lai L, Fang Z 2019 Phys. Rev. Lett. 123 213902Google Scholar
[47] Wang K, Ren X, Chang W, Lu L, Liu D, Zhang M 2020 Photonics Res. 8 528Google Scholar
[48] Meng F, Zhao X, Ding J, et al. 2021 Opt. Lett. 46 1454Google Scholar
[49] Zelaci A, Yasli A, Kalyoncu C, Ademgil H 2021 J. Lightwave Technol. 39 1515Google Scholar
[50] Zhang T, Wang J, Liu Q, Zhou J, Dai J, Han X, Zhou Y, Xu K 2019 Photonics Res. 7 368Google Scholar
[51] Tu X, Xie W, Chen Z, Ge M, Huang T, Song C, Fu H Y 2021 J. Lightwave Technol. 39 2790Google Scholar
[52] Zhang S Y, Zhang C, Zeng Y, Liu D M, Qin Y W, Zhang Z R, Fu S N 2022 IEEE J. Sel. Top. Quantum Electron. 28 4500110Google Scholar
[53] Dinsdale N J, Wiecha P R, Delaney M, Reynolds J, Ebert M, Zeimpekis I, Thomson D J, Reed G T, Lalanne P, Vynck K, Muskens O L 2021 ACS Photonics 8 283Google Scholar
[54] Idjadi M H, Aflatouni F 2020 Nat. Photonics 14 234Google Scholar
[55] Jing G, Wang P, Wu H, Ren J, Xie Z, Liu J, Ye H, Li Y, Fan D, Chen S 2022 Photonics Res. 10 1462Google Scholar
[56] Yoo D, de León-Pérez F, Pelton M, Lee I, Mohr D A, Raschke M B, Caldwell J D, Martín-Moreno L, Oh S 2021 Nat. Photonics 15 125Google Scholar
[57] Rouxel J R, Fainozzi D, Mankowsky R, et al. 2021 Nat. Photonics 15 499Google Scholar
[58] Cai X, Liu F, Yu A, Qin J, Hatamvand M, Ahmed I, Luo J, Zhang Y, Zhang H, Zhan Y 2022 Light-Sci. Appl. 11 234Google Scholar
[59] Guo Y, Cheng Y, Jiang Y, Cao M, Tang M, Ren W, Ren G 2022 Opt. Commun. 524 128814Google Scholar
[60] Qin H, Huang W, Song B, Chen S 2022 J. Lightwave Technol. 40 5974Google Scholar
[61] Qie J, Khoram E, Liu D, Zhou M, Gao L 2021 Photonics Res. 9 B104Google Scholar
[62] Gostimirovic D, Xu D, Liboiron-Ladouceur O, Grinberg Y 2022 ACS Photonics 9 2623Google Scholar
[63] Zang Y, Yu Z, Xu K, Lan X, Chen M, Yang S, Chen H 2022 J. Lightwave Technol. 40 404Google Scholar
[64] Ren Y, Zhang L, Wang W, Wang X, Lei Y, Xue Y, Sun X, Zhang W 2021 Photonics Res. 9 B247Google Scholar
[65] Zandehshahvar M, Kiarashinejad Y, Zhu M, Maleki H, Brown T, Adibi A 2022 ACS Photonics 9 714Google Scholar
[66] Li T, Chen A, Fan L, Zheng M, Wang J, Lu G, Zhao M, Cheng X, Li W, Liu X, Yin H, Shi L, Zi J 2021 Light-Sci. Appl. 10 154Google Scholar
[67] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H 2018 Light-Sci. Appl. 7 60Google Scholar
[68] Jabin M A, Fok M P 2022 IEEE Photonics Technol. Lett. 34 391Google Scholar
[69] Li R, Gu X, Shen Y, Li K, Li Z, Zhang Z 2022 Nanomaterials 12 1372Google Scholar
[70] Nakadai M, Tanaka K, Asano T, Takahashi Y, Noda S 2019 Appl. Phys. Express 13 12002Google Scholar
[71] Sohn D B, Örsel O E, Bahl G 2021 Nat. Photonics 15 822Google Scholar
[72] Ergoktas M S, Bakan G, Kovalska E, et al. 2021 Nat. Photonics 15 493Google Scholar
[73] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar
[74] Tahersima M H, Kojima K, Koike-Akino T, Jha D, Wang B, Lin C, Parsons K 2019 Sci. Rep. -UK 9 1368Google Scholar
[75] Zhang Q, Yu H, Barbiero M, Wang B, Gu M 2019 Light-Sci. Appl. 8 42Google Scholar
[76] Yamashita R, Nishio M, Do R K G, Togashi K 2018 Insights Imaging 9 611Google Scholar
[77] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2020 Commun. ACM 63 139Google Scholar
[78] Bonyadi M R, Michalewicz Z 2017 Evol. Comput. 25 1Google Scholar
[79] Kennedy J, Eberhart R 1995 Proceedings of ICNN'95-International Conference on Neural Networks, Perth, 27 November–01 December,1995 pp1942–1948
[80] Mirjalili S 2019 Genetic Algorithm (Cham: Springer International Publishing) p43
[81] Maulud D, Abdulazeez A M 2020 J. Appl. Sci. Tech. Trends 1 140Google Scholar
[82] Zhang F, O'Donnell L J 2020 Chapter 7-Support Vector Regression (New York: Academic Press) p123
[83] Kramer O 2013 K-Nearest Neighbors (Berlin: Heidelberg: Springer Berlin Heidelberg) p13
[84] Cutler A, Cutler D R, Stevens J R 2012 Random Forests (Boston: MA: Springer US) p157
[85] Natekin A, Knoll A 2013 Front. Neurorobot. 7 21Google Scholar
[86] Huo L, Wu H, Zhao C, Tang M 2022 IEEE J. Sel. Top. Quantum Electron. 28 7600107Google Scholar
[87] Wu W, Liu H, Li L, Long Y, Wang X, Wang Z, Li J, Chang Y 2021 PLoS One 16 e259283Google Scholar
[88] Szegedy C, Ioffe S, Vanhoucke V, Alemi A 2017 Proceedings of the AAAI Conference on Artificial Intelligence 31 11231Google Scholar
[89] Lagaris I E, Likas A, Fotiadis D I 1998 IEEE Trans. Neural Networks 9 987Google Scholar
[90] Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Chem. 378 686Google Scholar
[91] Krenn M, Pollice R, Guo S Y, Aldeghi M, Cervera-Lierta A, Friederich P, Gabriel D P G, Häse F, Jinich A, Nigam A, Yao Z, Aspuru-Guzik A 2022 Nat. Rev. Phys. 4 761Google Scholar
[92] Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q 2021 P. IEEE 109 43Google Scholar
[93] Iten R, Metger T, Wilming H, Del Rio L, Renner R 2020 Phys. Rev. Lett. 124 10508Google Scholar
-
表 1 现有微纳光学设计研究工作
Table 1. Current research on micro/nano optical design.
文献 年度 设计对象 应用领域 样本定义 标记定义 数据集样本数/来源 AI实现功能 学习任务 算法 性能度量指标 [15] 2020 等离子体超材料 材料 结构向量 圆二色性 28106/模拟 逆向设计 回归 DNN MSE [19] 2021 偏振分束器 通信 结构图像 透射率 —/实验 性能预测 回归 CNN MSE [46] 2019 手性纳米结构 通信 结构图像 圆二色性 10000/实验 性能优化 回归 BoNet MSE [47] 2020 3 dB功率分配器、
解模复用器通信 像素图像 透射率 —/实验 逆向设计 回归 digitized adjoint method MSE [48] 2021 空芯反谐振光纤 通信 结构向量 限制损耗 323000/模拟 性能预测 分类 KNN, decision tree Accuracy [49] 2021 光子晶体光纤 通信 结构向量 限制损耗 1000/模拟 性能预测 回归 GAN, ANN MSE [50] 2019 等离子体波导 通信 结构向量 透射率 20000/模拟 性能预测 回归 ANN, GA Accuracy [51] 2021 光栅耦合器 通信 结构向量 耦合效率 —/模拟 性能预测 回归 DNN MSE [52] 2022 模式耦合器 通信 结构向量 有效折射率 —/模拟 性能预测 回归 DNN, GA MSE [53] 2021 多端口多模波导 通信 像素图像 透射率 2500/模拟 性能预测 回归 ANN MSE [55] 2022 超表面 电磁波 结构图像 反射率、Ex、Ey相位 1000/实验 逆向设计 回归 CNN MSE [58] 2022 钙钛矿太阳能电池 光伏 结构向量 PCE能量转换效率 —/实验 性能预测 回归 LR, SVR, KNR,
RFR, GBR, NNRMSE, MAE [59] 2022 平顶光束激光器 激光器 结构向量 折射率 —/模拟 逆向设计 回归 ANN MSE [60] 2022 光纤 通信 结构向量 色散, 折射率差 1368/模拟 性能预测/
逆向设计回归/分类 PSO、MOPSO MSE [61] 2021 超表面 通信 结构图像 散射体的辐射模式 98000/模拟 性能预测 回归 DNN L2 loss [62] 2022 微纳硅基器件 加工 结构图像 distance 50680/实验 性能预测 回归 CNN BCE [63] 2022 光纤传输模型 通信 结构向量 透射率 —/模拟 性能预测 回归 PINN — [64] 2021 硅基光学器件 通信 结构向量 透射率 1000/模拟 性能预测 回归 DNN, GA RMSE [65] 2022 光学纳米结构 通信 结构向量 Latent Dimension 8000/模拟 逆向设计 回归 DNN MSE [66] 2021 光栅轮廓重建 通信 结构向量 反射率 —/实验 逆向设计 回归 DNN — [67] 2018 等离子体纳米结构 通信 结构向量 透射率 1500/模拟 逆向设计 回归 DNN MSE [68] 2022 光子晶体光纤 通信 结构向量 (PCF)各项参数 2515/模拟 性能预测 回归 ANN MSE [69] 2022 光子晶体 通信 结构图像 Q参数, 纳米结构V 12750/实验 性能预测 回归 CNN MSE [70] 2020 光子晶体 通信 结构向量 频率 —/实验 性能优化 回归 DNN — [54] 2020 相位噪声滤波器 通信 [56] 2020 等离子体-声子耦合器 传感 [57] 2021 X射线瞬态光栅 传感 [71] 2021 光隔离器 通信 [72] 2021 基于石墨烯的
多光谱电光表面材料 表 2 定义HC-ARF样本的结构参数向量
Table 2. Structure-parameter vector for defining HC-ARF samples.
No. Symbols Range Description 1 s1 1, 2, 3 Structural style of the first tubes 2 s2 0, 1, 2, 3 Structural style of the second tubes 3 N 5—10 Number of first/second tubes 4 Dcore 30 µm Core diameter 5 Ma_1c 20—40 µm Major axis of the first cladding tube 6 Mi_1c 20—40 µm Minor axis of the first cladding tube 7 Ma_2c 10—20 µm Major axis of the second cladding tube 8 Mi_2c 10—20 µm Minor axis of the second cladding tube 9 Ma_2n 0.3—0.8·Ma_2c Major axis of the second nested tube 10 Mi_2n 0.3—0.8·Ma_2n Minor axis of the second nested tube 11 Ma_1n 0.3—0.8·Ma_1c Major axis of the first nested tube 12 Mi_1n 0.3—0.8·Ma_1n Minor axis of the first nested tube 13 t_1c 0.3—0.7 µm Thickness of the first cladding tube 14 t_1n 0.3—0.7 µm Thickness of the first nested tube 15 t_2c 0.3—0.7 µm Thickness of the second cladding tube 16 t_2n 0.3—0.7 µm Thickness of the second nested tube 表 3 混淆矩阵
Table 3. Confusion matrix.
混淆矩阵 真实值 Positive Negative 预
测
值Positive True positive (TP) False positive (FP) Negative False negative (FN) True negative (TN) -
[1] 李涛, 祝世宁 2022 科学观察 17 63Google Scholar
Li T, Zhu S N 2022 Science Focus 17 63Google Scholar
[2] Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y 2016 Opt. Express 24 6586Google Scholar
[3] Hu Y, Yu M, Zhu D, et al. 2021 Nature 599 587Google Scholar
[4] Ham B S 2020 Sci. Rep. -UK 10 7309Google Scholar
[5] Xie C, Zou X, Zou F, Yan L, Pan W, Zhang Y 2021 Chin. Phys. B 30 120703Google Scholar
[6] Shibayama J, Kawai H, Yamauchi J, Nakano H 2019 Opt. Commun. 452 360Google Scholar
[7] Chen S, Xie Z, Ye H, Wang X, Guo Z, He Y, Li Y, Yuan X, Fan D 2021 Light-Sci. Appl. 10 222Google Scholar
[8] De M, Gangopadhyay T K, Singh V K 2019 Sensors 19 464Google Scholar
[9] Portosi V, Laneve D, Falconi M C, Prudenzano F 2019 Sensors 19 1892Google Scholar
[10] Yu R, Chen Y, Shui L, Xiao L 2020 Sensors 20 2996Google Scholar
[11] Meinecke S, Drzewietzki L, Weber C, Lingnau B, Breuer S, Lüdge K 2019 Sci. Rep. -UK 9 1783Google Scholar
[12] Fan Y, van Rees A, van der Slot P, Mak J, Oldenbeuving R M, Hoekman M, Geskus D, Roeloffzen C, Boller K J 2020 Opt. Express 28 21713Google Scholar
[13] Li W, Coppens Z J, Besteiro L V, Wang W, Govorov A O, Valentine J 2015 Nat. Commun. 6 8379Google Scholar
[14] Bai J, Yao Y 2021 ACS Nano 15 14263Google Scholar
[15] Ashalley E, Acheampong K, Besteiro L V, Yu P, Neogi A, Govorov A O, Wang Z M 2020 Photonics Res. 8 1213Google Scholar
[16] Chen Z, Zheng S, Tong Z, Yuan X 2022 Optica 9 677Google Scholar
[17] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar
[18] Wang S, Wu P C, Su V, et al. 2018 Nat. Nanotechnol. 13 227Google Scholar
[19] Getman F, Makarenko M, Burguete-Lopez A, Fratalocchi A 2021 Light-Sci. Appl. 10 47Google Scholar
[20] Wu J, Yang Y, Qu Y, Jia L, Zhang Y, Xu X, Chu S T, Little B E, Morandotti R, Jia B, Moss D J 2020 Small 16 1906563Google Scholar
[21] Chen Y, Yin Y, Ma L, Schmidt O G 2021 Adv. Opt. Mater. 9 2100143Google Scholar
[22] Shlager K L, Schneider J B 1995 IEEE Antennas Propag. Mag. 37 39Google Scholar
[23] Dhatt G, Lefrançois E, Touzot G 2012 Finite Element Method (Hoboken: John Wiley & Sons) p1
[24] Zuazua E 2005 SIAM Rev. 47 197Google Scholar
[25] Ma W, Liu Z, Kudyshev Z A, Boltasseva A, Cai W, Liu Y 2021 Nat. Photonics 15 77Google Scholar
[26] Goh G B, Hodas N O, Vishnu A 2017 J. Comput. Chem. 38 1291Google Scholar
[27] Dral P O 2020 J. Phys. Chem. Lett. 11 2336Google Scholar
[28] Paruzzo F M, Hofstetter A, Musil F, De S, Ceriotti M, Emsley L 2018 Nat. Commun. 9 4501Google Scholar
[29] von Lilienfeld O A, Burke K 2020 Nat. Commun. 11 4895Google Scholar
[30] Mater A C, Coote M L 2019 J. Chem. Inf. Model. 59 2545Google Scholar
[31] Schweidtmann A M, Clayton A D, Holmes N, Bradford E, Bourne R A, Lapkin A A 2018 Chem. Eng. J. 352 277Google Scholar
[32] Chen C, Zuo Y, Ye W, Li X, Deng Z, Ong S P 2020 Adv. Energy Mater. 10 1903242Google Scholar
[33] Schleder G R, Padilha A C M, Acosta C M, Costa M, Fazzio A 2019 J. Phys. Mater. 2 32001Google Scholar
[34] Schmidt J, Marques M R G, Botti S, Marques M A L 2019 npj Comput. Mater. 5 83Google Scholar
[35] Zhang Y, Ling C 2018 npj Comput. Mater. 4 25Google Scholar
[36] Bleiziffer P, Schaller K, Riniker S 2018 J. Chem. Inf. Model. 58 579Google Scholar
[37] Carrasquilla J 2020 Adv. Phys. -X 5 1797528Google Scholar
[38] Schütt K T, Gastegger M, Tkatchenko A, Müller K R, Maurer R J 2019 Nat. Commun. 10 5024Google Scholar
[39] von Lilienfeld O A, Müller K, Tkatchenko A 2020 Nat. Rev. Chem. 4 347Google Scholar
[40] 沈培鑫, 蒋文杰, 李炜康, 鲁智德, 邓东灵 2021 70 140302Google Scholar
Shen P X, Jiang W J, Li W K, Lu Z D, Deng D L 2021 Acta Phys. Sin. 70 140302Google Scholar
[41] Bourilkov D 2019 Int. J. Mod. Phys. A 34 1930019Google Scholar
[42] Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, Zdeborová L, Carleo G 2019 Rev. Mod. Phys. 91 45002Google Scholar
[43] Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D, Himmel A, Aurisano A, Terao K, Wongjirad T 2018 Nature 560 41Google Scholar
[44] Shlomi J, Battaglia P, Vlimant J 2021 Mach. Learn. :Sci. Technol. 2 21001Google Scholar
[45] Vázquez-Escobar J, Hernández J M, Cárdenas-Montes M 2021 Comput. Phys. Commun. 268 108100Google Scholar
[46] Li Y, Xu Y, Jiang M, Li B, Han T, Chi C, Lin F, Shen B, Zhu X, Lai L, Fang Z 2019 Phys. Rev. Lett. 123 213902Google Scholar
[47] Wang K, Ren X, Chang W, Lu L, Liu D, Zhang M 2020 Photonics Res. 8 528Google Scholar
[48] Meng F, Zhao X, Ding J, et al. 2021 Opt. Lett. 46 1454Google Scholar
[49] Zelaci A, Yasli A, Kalyoncu C, Ademgil H 2021 J. Lightwave Technol. 39 1515Google Scholar
[50] Zhang T, Wang J, Liu Q, Zhou J, Dai J, Han X, Zhou Y, Xu K 2019 Photonics Res. 7 368Google Scholar
[51] Tu X, Xie W, Chen Z, Ge M, Huang T, Song C, Fu H Y 2021 J. Lightwave Technol. 39 2790Google Scholar
[52] Zhang S Y, Zhang C, Zeng Y, Liu D M, Qin Y W, Zhang Z R, Fu S N 2022 IEEE J. Sel. Top. Quantum Electron. 28 4500110Google Scholar
[53] Dinsdale N J, Wiecha P R, Delaney M, Reynolds J, Ebert M, Zeimpekis I, Thomson D J, Reed G T, Lalanne P, Vynck K, Muskens O L 2021 ACS Photonics 8 283Google Scholar
[54] Idjadi M H, Aflatouni F 2020 Nat. Photonics 14 234Google Scholar
[55] Jing G, Wang P, Wu H, Ren J, Xie Z, Liu J, Ye H, Li Y, Fan D, Chen S 2022 Photonics Res. 10 1462Google Scholar
[56] Yoo D, de León-Pérez F, Pelton M, Lee I, Mohr D A, Raschke M B, Caldwell J D, Martín-Moreno L, Oh S 2021 Nat. Photonics 15 125Google Scholar
[57] Rouxel J R, Fainozzi D, Mankowsky R, et al. 2021 Nat. Photonics 15 499Google Scholar
[58] Cai X, Liu F, Yu A, Qin J, Hatamvand M, Ahmed I, Luo J, Zhang Y, Zhang H, Zhan Y 2022 Light-Sci. Appl. 11 234Google Scholar
[59] Guo Y, Cheng Y, Jiang Y, Cao M, Tang M, Ren W, Ren G 2022 Opt. Commun. 524 128814Google Scholar
[60] Qin H, Huang W, Song B, Chen S 2022 J. Lightwave Technol. 40 5974Google Scholar
[61] Qie J, Khoram E, Liu D, Zhou M, Gao L 2021 Photonics Res. 9 B104Google Scholar
[62] Gostimirovic D, Xu D, Liboiron-Ladouceur O, Grinberg Y 2022 ACS Photonics 9 2623Google Scholar
[63] Zang Y, Yu Z, Xu K, Lan X, Chen M, Yang S, Chen H 2022 J. Lightwave Technol. 40 404Google Scholar
[64] Ren Y, Zhang L, Wang W, Wang X, Lei Y, Xue Y, Sun X, Zhang W 2021 Photonics Res. 9 B247Google Scholar
[65] Zandehshahvar M, Kiarashinejad Y, Zhu M, Maleki H, Brown T, Adibi A 2022 ACS Photonics 9 714Google Scholar
[66] Li T, Chen A, Fan L, Zheng M, Wang J, Lu G, Zhao M, Cheng X, Li W, Liu X, Yin H, Shi L, Zi J 2021 Light-Sci. Appl. 10 154Google Scholar
[67] Malkiel I, Mrejen M, Nagler A, Arieli U, Wolf L, Suchowski H 2018 Light-Sci. Appl. 7 60Google Scholar
[68] Jabin M A, Fok M P 2022 IEEE Photonics Technol. Lett. 34 391Google Scholar
[69] Li R, Gu X, Shen Y, Li K, Li Z, Zhang Z 2022 Nanomaterials 12 1372Google Scholar
[70] Nakadai M, Tanaka K, Asano T, Takahashi Y, Noda S 2019 Appl. Phys. Express 13 12002Google Scholar
[71] Sohn D B, Örsel O E, Bahl G 2021 Nat. Photonics 15 822Google Scholar
[72] Ergoktas M S, Bakan G, Kovalska E, et al. 2021 Nat. Photonics 15 493Google Scholar
[73] Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar
[74] Tahersima M H, Kojima K, Koike-Akino T, Jha D, Wang B, Lin C, Parsons K 2019 Sci. Rep. -UK 9 1368Google Scholar
[75] Zhang Q, Yu H, Barbiero M, Wang B, Gu M 2019 Light-Sci. Appl. 8 42Google Scholar
[76] Yamashita R, Nishio M, Do R K G, Togashi K 2018 Insights Imaging 9 611Google Scholar
[77] Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2020 Commun. ACM 63 139Google Scholar
[78] Bonyadi M R, Michalewicz Z 2017 Evol. Comput. 25 1Google Scholar
[79] Kennedy J, Eberhart R 1995 Proceedings of ICNN'95-International Conference on Neural Networks, Perth, 27 November–01 December,1995 pp1942–1948
[80] Mirjalili S 2019 Genetic Algorithm (Cham: Springer International Publishing) p43
[81] Maulud D, Abdulazeez A M 2020 J. Appl. Sci. Tech. Trends 1 140Google Scholar
[82] Zhang F, O'Donnell L J 2020 Chapter 7-Support Vector Regression (New York: Academic Press) p123
[83] Kramer O 2013 K-Nearest Neighbors (Berlin: Heidelberg: Springer Berlin Heidelberg) p13
[84] Cutler A, Cutler D R, Stevens J R 2012 Random Forests (Boston: MA: Springer US) p157
[85] Natekin A, Knoll A 2013 Front. Neurorobot. 7 21Google Scholar
[86] Huo L, Wu H, Zhao C, Tang M 2022 IEEE J. Sel. Top. Quantum Electron. 28 7600107Google Scholar
[87] Wu W, Liu H, Li L, Long Y, Wang X, Wang Z, Li J, Chang Y 2021 PLoS One 16 e259283Google Scholar
[88] Szegedy C, Ioffe S, Vanhoucke V, Alemi A 2017 Proceedings of the AAAI Conference on Artificial Intelligence 31 11231Google Scholar
[89] Lagaris I E, Likas A, Fotiadis D I 1998 IEEE Trans. Neural Networks 9 987Google Scholar
[90] Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Chem. 378 686Google Scholar
[91] Krenn M, Pollice R, Guo S Y, Aldeghi M, Cervera-Lierta A, Friederich P, Gabriel D P G, Häse F, Jinich A, Nigam A, Yao Z, Aspuru-Guzik A 2022 Nat. Rev. Phys. 4 761Google Scholar
[92] Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q 2021 P. IEEE 109 43Google Scholar
[93] Iten R, Metger T, Wilming H, Del Rio L, Renner R 2020 Phys. Rev. Lett. 124 10508Google Scholar
Catalog
Metrics
- Abstract views: 7779
- PDF Downloads: 248
- Cited By: 0