-
BaxSr1–xTiO3 (BST) ferroelectric thin films are widely used in microwave tunable devices due to their high dielectric constants, strong electric field tunabilities and low microwave losses. However, because of the temperature dependence of dielectric constant in ferroelectric material, the high-tunability for conventional single component ferroelectric thin film can only be achieved in the vicinity of Curie Temperature (TC) which leads the ferroelectric thin films to be difficult to operate in a wide temperature range. To obtain ferroelectric thin films for temperature stable functional devices, single composition Ba0.2Sr0.8TiO3 thin films, Ba0.5Sr0.5TiO3 thin films, and Ba0.2Sr0.8TiO3/Ba0.5Sr0.5TiO3 heterostructure thin films are deposited by pulsed laser deposition (PLD). By comparing their dielectric properties in a wide temperature range, it is found that the temperature sensitivity of BST film can be effectively reduced by introducing a composition gradient along the epitaxial direction. However, the heterostructure engineering may bring extra troubles caused by interfaces, which may limit the quality factor Q. In this paper, we extend our combinatorial film deposition technique to ferroelectric materials, and we successfully fabricate in-plane composition-spread Ba1–xSrxTiO3 thin films, which are expected to broaden the phase transition temperature ranges of BST films while avoiding the problem of interface control.
-
Keywords:
- BaxSr1–xTiO3 films /
- tunable microwave devices /
- composition-spread films /
- temperature stability
[1] Valasek J 1921 Phys. Rev. 17 475
Google Scholar
[2] Busch G 1987 Ferroelectrics 74 267
Google Scholar
[3] [4] Xu Y 1991 Ferroelectric Materials and their Applications (Amsterdam: Elsevier) pp1–36
[5] Mikami N 1997 Thin Film Ferroelectric Materials and Devices (Boston, MA: Springer US) pp43–70
[6] Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti Jr G A, Rödel J 2017 Appl. Phys. Rev. 4 041305
Google Scholar
[7] Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceramics 11 5
Google Scholar
[8] Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. and Technol. 11 1323
Google Scholar
[9] Vendik O G, Hollmann E K, Kozyrev A B, Prudan A M 1999 J. Supercond. 12 325
Google Scholar
[10] Xi X X, Li H, Si W, Sirenko A A, Akimov I A, Fox J R, Clark A M, Hao J 2000 J. Electroceram. 4 393
Google Scholar
[11] Baik S, Setter N, Auciello O 2006 J. Appl. Phys. 100 051501
Google Scholar
[12] Korn D S, Wu H D 1999 Integr. Ferroelectr. 24 215
Google Scholar
[13] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606
Google Scholar
[14] Scott J F 2000 Ferroelectric Memories (Berlin, Heidelberg: Springer) pp1–22
[15] Scheele P, Goelden F, Giere A, Mueller S, Jakoby R 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, CA, USA, June 17, 2005 pp603–606
[16] Deleniv A, Abadei S, Gevorgian S 2003 IEEE MTT-S International Microwave Symposium Digest (Vol. 2), Philadelphia, PA, USA, June 8–13, 2003 p1267
[17] Kuylenstierna D, Vorobiev A, Linner P, Gevorgian S 2006 IEEE Microw. Wirel. Compon. Lett. 16 167
Google Scholar
[18] Mahmud A, Kalkur T S, Jamil A, Cramer N 2006 IEEE Microw. Wirel. Compon. Lett. 16 261
Google Scholar
[19] Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D Appl. Phys. 41 063001
Google Scholar
[20] Cole M W, Ngo E, Hirsch S, Demaree J D, Zhong S, Alpay S P 2007 J. Appl. Phys. 102 034104
Google Scholar
[21] Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504
Google Scholar
[22] Setter N, Cross L E 1980 J. Appl. Phys. 51 4356
Google Scholar
[23] Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602
Google Scholar
[24] Yao G, Wang X, Wu Y, Li L 2012 J. Am. Ceram. Soc. 95 614
Google Scholar
[25] Wang S F, Li J H, Hsu Y F, Wu Y C, Lai Y C, Chen M H 2013 J. Eur. Ceram. Soc. 33 1793
Google Scholar
[26] Vendik O G, Zubko S P 2000 J. Appl. Phys. 88 5343
Google Scholar
[27] Zhu X H, Meng Q D, Yong L P, He Y S, Cheng B L, Zheng D N 2006 J. Phys. D: Appl. Phys. 39 2282
Google Scholar
[28] Kim W J, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 Appl. Phys. Lett. 76 1185
Google Scholar
[29] 金魁, 吴颉 2021 70 017403
Google Scholar
Jin K, Wu J 2021 Acta Phys. Sin. 70 017403
Google Scholar
[30] Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033
Google Scholar
[31] Chang W, Kirchoefer S W, Pond J M, Horwitz J S, Sengupta L 2002 J. Appl. Phys. 92 1528
Google Scholar
[32] Boikov Y A, Claeson T 2001 Appl. Phys. Lett. 79 2052
Google Scholar
[33] Wang H Z, Dong Y X, Zhu R J, Wang Z M, Guo X L, Zhang T, Yuan G L, Kimura H 2019 Ceram. Int. 45 8300
Google Scholar
[34] Kim W J, Wu H D, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 J. Appl. Phys. 88 5448
Google Scholar
[35] Ding Y P, Wu J S, Meng Z Y, Chan H L, Choy Z L 2002 Mater. Chem. Phys. 75 220
Google Scholar
[36] Schimizu T 1997 Solid State Commun. 102 523
Google Scholar
[37] Gevorgian S, Petrov P K, Ivanov Z, Wikborg E 2001 Appl. Phys. Lett. 79 1861
Google Scholar
[38] Dong H T, Lu G P, Jin D P, Chen J G, Cheng J R 2016 J. Mater. Sci. 51 8414
Google Scholar
[39] Zhu R J, Wang Z M, Cheng Z X, Guo X L, Zhang T, Cai Z L, Kimura H, Matsumoto T, Shibata N, Ikuhara Y 2020 Ceram. Int. 46 20284
Google Scholar
[40] Cole M W, Ngo E, Hirsch S, Okatan M B, Alpay S P 2008 Appl. Phys. Lett. 92 072906
Google Scholar
[41] Marksz E J, Hagerstrom A M, Zhang X, Al Hasan N, Pearson J, Drisko J A, Booth J C, Long C J, Takeuchi I, Orloff N D 2021 Phys. Rev. Appl. 15 064061
Google Scholar
-
图 1 Ba0.5Sr0.5TiO3样品的(a)面外X射线θ-2θ扫描, (b) (031)峰倒易空间衍射(RSM), (c) X射线面内φ扫描, (d)室温下电容值与品质因子随外加电场的变化
Figure 1. (a) Out of plane XRD spectra of θ-2θ scanning for Ba0.5Sr0.5TiO3 film; (b) RSM of (301) diffraction peak for Ba0.5Sr0.5TiO3 film; (c) XRD spectra of φ scanning for Ba0.5Sr0.5TiO3 film; (d) dependence of capacitance and Q with electric field at room temperature.
图 2 不同生长氧压的Ba0.5Sr0.5TiO3薄膜的(a) C0和(b)品质因子随温度变化; 不同生长氧压的Ba0.2Sr0.8TiO3薄膜的(c) C0和(d)品质因子随温度变化
Figure 2. Temperature dependence of C0 (a) and Q (b) for Ba0.5Sr0.5TiO3 films deposited at different oxygen pressures; the temperature dependence of C0 (c) and Q (d) for Ba0.2Sr0.8TiO3 films deposited at different oxygen pressures.
图 4 (a) Ba0.5Sr0.5TiO3组分样品的面内(a)、面外晶格常数(c)及四方畸变比(a/c)随生长氧压的变化; (b) Ba0.5Sr0.5TiO3组分样品的可调率随四方畸变比a/c的变化
Figure 4. (a) Relationship between the in-plane lattice constant (a), out-of-plane lattice constant (c), the ratio of in-plane lattice constant/ out-of-plane lattice constant (a/c) of Ba0.5Sr0.5TiO3 films and their growth oxygen pressure; (b) the relationship between the nrMAX and a/c of Ba0.5Sr0.5TiO3 films.
-
[1] Valasek J 1921 Phys. Rev. 17 475
Google Scholar
[2] Busch G 1987 Ferroelectrics 74 267
Google Scholar
[3] [4] Xu Y 1991 Ferroelectric Materials and their Applications (Amsterdam: Elsevier) pp1–36
[5] Mikami N 1997 Thin Film Ferroelectric Materials and Devices (Boston, MA: Springer US) pp43–70
[6] Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti Jr G A, Rödel J 2017 Appl. Phys. Rev. 4 041305
Google Scholar
[7] Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N 2003 J. Electroceramics 11 5
Google Scholar
[8] Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. and Technol. 11 1323
Google Scholar
[9] Vendik O G, Hollmann E K, Kozyrev A B, Prudan A M 1999 J. Supercond. 12 325
Google Scholar
[10] Xi X X, Li H, Si W, Sirenko A A, Akimov I A, Fox J R, Clark A M, Hao J 2000 J. Electroceram. 4 393
Google Scholar
[11] Baik S, Setter N, Auciello O 2006 J. Appl. Phys. 100 051501
Google Scholar
[12] Korn D S, Wu H D 1999 Integr. Ferroelectr. 24 215
Google Scholar
[13] Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606
Google Scholar
[14] Scott J F 2000 Ferroelectric Memories (Berlin, Heidelberg: Springer) pp1–22
[15] Scheele P, Goelden F, Giere A, Mueller S, Jakoby R 2005 IEEE MTT-S International Microwave Symposium Digest Long Beach, CA, USA, June 17, 2005 pp603–606
[16] Deleniv A, Abadei S, Gevorgian S 2003 IEEE MTT-S International Microwave Symposium Digest (Vol. 2), Philadelphia, PA, USA, June 8–13, 2003 p1267
[17] Kuylenstierna D, Vorobiev A, Linner P, Gevorgian S 2006 IEEE Microw. Wirel. Compon. Lett. 16 167
Google Scholar
[18] Mahmud A, Kalkur T S, Jamil A, Cramer N 2006 IEEE Microw. Wirel. Compon. Lett. 16 261
Google Scholar
[19] Bao P, Jackson T J, Wang X, Lancaster M J 2008 J. Phys. D Appl. Phys. 41 063001
Google Scholar
[20] Cole M W, Ngo E, Hirsch S, Demaree J D, Zhong S, Alpay S P 2007 J. Appl. Phys. 102 034104
Google Scholar
[21] Li F, Zhang S, Damjanovic D, Chen L-Q, Shrout T R 2018 Adv. Funct. Mater. 28 1801504
Google Scholar
[22] Setter N, Cross L E 1980 J. Appl. Phys. 51 4356
Google Scholar
[23] Jeong I K, Darling T W, Lee J K, Proffen T, Heffner R H, Park J S, Hong K S, Dmowski W, Egami T 2005 Phys. Rev. Lett. 94 147602
Google Scholar
[24] Yao G, Wang X, Wu Y, Li L 2012 J. Am. Ceram. Soc. 95 614
Google Scholar
[25] Wang S F, Li J H, Hsu Y F, Wu Y C, Lai Y C, Chen M H 2013 J. Eur. Ceram. Soc. 33 1793
Google Scholar
[26] Vendik O G, Zubko S P 2000 J. Appl. Phys. 88 5343
Google Scholar
[27] Zhu X H, Meng Q D, Yong L P, He Y S, Cheng B L, Zheng D N 2006 J. Phys. D: Appl. Phys. 39 2282
Google Scholar
[28] Kim W J, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 Appl. Phys. Lett. 76 1185
Google Scholar
[29] 金魁, 吴颉 2021 70 017403
Google Scholar
Jin K, Wu J 2021 Acta Phys. Sin. 70 017403
Google Scholar
[30] Chang W, Horwitz J S, Carter A C, Pond J M, Kirchoefer S W, Gilmore C M, Chrisey D B 1999 Appl. Phys. Lett. 74 1033
Google Scholar
[31] Chang W, Kirchoefer S W, Pond J M, Horwitz J S, Sengupta L 2002 J. Appl. Phys. 92 1528
Google Scholar
[32] Boikov Y A, Claeson T 2001 Appl. Phys. Lett. 79 2052
Google Scholar
[33] Wang H Z, Dong Y X, Zhu R J, Wang Z M, Guo X L, Zhang T, Yuan G L, Kimura H 2019 Ceram. Int. 45 8300
Google Scholar
[34] Kim W J, Wu H D, Chang W, Qadri S B, Pond J M, Kirchoefer S W, Chrisey D B, Horwitz J S 2000 J. Appl. Phys. 88 5448
Google Scholar
[35] Ding Y P, Wu J S, Meng Z Y, Chan H L, Choy Z L 2002 Mater. Chem. Phys. 75 220
Google Scholar
[36] Schimizu T 1997 Solid State Commun. 102 523
Google Scholar
[37] Gevorgian S, Petrov P K, Ivanov Z, Wikborg E 2001 Appl. Phys. Lett. 79 1861
Google Scholar
[38] Dong H T, Lu G P, Jin D P, Chen J G, Cheng J R 2016 J. Mater. Sci. 51 8414
Google Scholar
[39] Zhu R J, Wang Z M, Cheng Z X, Guo X L, Zhang T, Cai Z L, Kimura H, Matsumoto T, Shibata N, Ikuhara Y 2020 Ceram. Int. 46 20284
Google Scholar
[40] Cole M W, Ngo E, Hirsch S, Okatan M B, Alpay S P 2008 Appl. Phys. Lett. 92 072906
Google Scholar
[41] Marksz E J, Hagerstrom A M, Zhang X, Al Hasan N, Pearson J, Drisko J A, Booth J C, Long C J, Takeuchi I, Orloff N D 2021 Phys. Rev. Appl. 15 064061
Google Scholar
Catalog
Metrics
- Abstract views: 4055
- PDF Downloads: 156
- Cited By: 0