搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于空间相机设计的高精度光线追迹方法

吴长茂 唐熊忻 夏媛媛 杨瀚翔 徐帆江

引用本文:
Citation:

用于空间相机设计的高精度光线追迹方法

吴长茂, 唐熊忻, 夏媛媛, 杨瀚翔, 徐帆江

High precision ray tracing method for space camera in optical design

Wu Chang-Mao, Tang Xiong-Xin, Xia Yuan-Yuan, Yang Han-Xiang, Xu Fan-Jiang
PDF
HTML
导出引用
  • 空间光学系统在应用需求牵引下, 向着大尺度、高精度、复杂化等方向发展, 像差随着焦距与口径的增大呈幂指数增长, 微小的误差扰动就会引起像质的大幅退化, 因此对光线追迹算法的精度和稳定性提出了更严苛要求. 本文从误差分析理论出发, 提出了光线追迹精度表示模型, 依据模型分析了计算过程误差来源, 并设计了高精度光线追迹算法. 数值仿真实验和典型空间相机设计案例结果表明, 本文方法在精度上较原有方法提高了5—6个数量级, 残差平均比Zemax小近3个数量级, 数值稳定性也得到了极大提升.
    Ray tracing plays a key role in lens design area, and it is an important tool to study the problems in physics like optics. Nowadays, ray tracing becomes ubiquitous and is widely used in optical automatic design, such as aberration analysis, optimization, and tolerance calculation. With the impulse of application requirements, optical systems like space camera develop towards large scale, high degree of accuracy and complication. The magnitude of aberrations increases exponentially with the growth of focal length and aperture, even a minor perturbation error can result in severe degeneration of image quality. As a consequence, the stringent requirements for precision, accuracy and stability of ray tracing turn higher. Reliable commercial software, for example, America’s Zemax, has high precision in ray tracing, because of commercial purpose, the process of ray tracing is a black box. It is now more important to understand what error factors are formed for ray tracing, and how these running errors can be reduced effectively. In this paper, from floating point arithmetic perspective, an error model for ray tracing is provided. This error model is suitable for not only meridional rays, but also skew rays. Starting from IEEE Standard for Binary Floating-Point Arithmetic, presentation error and rounding error are analyzed, followed by the computation process of ray’s intersection point with a quadratic surface, then rounding error expression for the intersection point is presented. In addition, error expression for distance along the ray from the reference surface to the next surface is also induced. These two error expressions are called error model, and it clearly indicates that spatial coordinates on the reference surface, direction vector and distance between the two adjacent surfaces are the main error sources. Based on the error model, some of effective measures, for instance, reprojection, spatial transformation, and direction vector’s normalization are taken to reduce the rounding error. Moreover, in the process of solving quadratic equation, conjugate number method is utilized in order to avoid increasing substantially in relative error called catastrophic cancellation. Numerical experiments and classical optical design for space camera are also given. From numerical computing view, two precision tests based on Multiple Precision Floating-Point Reliable (MPFR) library are introduced to verify our method mathematically. The experimental results show that our algorithm has the same precision (14 significant digits) as MPFR, while the existing method fails to pass tests, and has only 8 significant digits at most. Moreover, both the Cassegrain space camera and off-axis three-mirror-anastigmat space camera are used to illustrate our method’s accuracy. Experimental results indicate that our method has higher precision, more than 5 to 6 orders of magnitudes than the existing method. In addition, our algorithm has higher precision than the commercial optical design software Zemax, and residuals are 3 orders of magnitudes on average less than Zemax.
      通信作者: 唐熊忻, xiongxin@iscas.ac.cn ; 徐帆江, fanjiang@iscas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3601400)资助的课题
      Corresponding author: Tang Xiong-Xin, xiongxin@iscas.ac.cn ; Xu Fan-Jiang, fanjiang@iscas.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFB3601400)
    [1]

    郭疆, 朱磊, 赵继, 龚大鹏 2021 光学精密工程 27 1138Google Scholar

    Guo J, Zhu L, Zhao J, Gong D P 2021 Opt. Precision Eng. 27 1138Google Scholar

    [2]

    高洋, 王书新, 齐光, 孙斌, 伞兵, 李景林 2022 光学技术 48 562Google Scholar

    Gao Y, Wang S X, Qi G, Sun B, San B, Li J L 2022 Opt. Techn. 48 562Google Scholar

    [3]

    孟庆宇, 汪洪源, 王维, 秦子长, 王晓东 2021 光学精密工程 29 72Google Scholar

    Meng Q Y, Wang H Y, Wang W, Qin Z C, Wang X D 2021 Opt. Precision Eng. 29 72Google Scholar

    [4]

    Zhong C L, Sang X Z, Yan B B, Li H, Chen D, Qin X J 2022 Opt. Express 30 40087Google Scholar

    [5]

    Appel A 1968 Proceedings of Spring Joint Computer Conference Atlantic City, New Jersey, USA, 30 April–2 May 1968 pp37–45

    [6]

    Whitted T 1980 Commun. ACM 23 6

    [7]

    Veach E 1997 Ph. D. Dissertation (Stanford: Stanford University)

    [8]

    Braddick H J J 1960 Rep. Prog. Phys. 23 154Google Scholar

    [9]

    王之江 1985 光学设计理论基础 (第二版) (北京: 科学出版社) 第3—36 页

    Wang Z J 1985 Fundamental Theory of Lens Design (2nd Ed.) (Beijing: Science Press) pp3–36 (in Chinese)

    [10]

    王涌天 1990 光学技术 5 2

    Wang Y T 1990 Opt. Techn. 5 2

    [11]

    李林, 安连生 2002 计算机辅助光学设计的理论与应用 (北京: 国防工业出版社) 第1—38 页

    Li L, An L S 2002 Theory and Application of Computer Aided Optical Design (Beijing: National Defense Industry Press) pp1–38 (in Chinese)

    [12]

    李晓彤, 岑兆丰 2021 几何光学·像差·光学设计 (第4 版) (杭州: 浙江大学出版社) 第162—179 页

    Li X T, Cen Z F 2021 Geometrical Optics, Aberrations and Optical Design (4th Ed.) (Hangzhou: Zhejiang University Press) pp162–179 (in Chinese)

    [13]

    张以谟, 张红霞, 贾大功 2021 应用光学 (第5版) (北京: 电子工业出版社) 第14—21 页

    Zhang Y M, Zhang H X, Jia D G 2021 Applied Optics (5th Ed.) (Beijing: Publishing House of Electronics Industry) pp14–21(in Chinese)

    [14]

    Marrs A, Shirley P, Wald I 2021 Ray Tracing Gems Ⅱ: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX (1st Ed.) (New York: Apress) pp545–550

    [15]

    步志超, 张淳民, 赵葆常, 朱化春 2009 58 2415Google Scholar

    Bu Z C, Zhang C M, Zhu H C 2009 Acta Phys. Sin. 58 2415Google Scholar

    [16]

    Spence S E, Parks A D 2016 Appl. Opt. 55 C46Google Scholar

    [17]

    王楠, 阮双琛 2020 69 024201Google Scholar

    Wang N, Ruan S C 2020 Acta Phys. Sin. 69 024201Google Scholar

    [18]

    Schedin S, Hallberg P, Behndig A 2017 Appl. Opt. 56 9787Google Scholar

    [19]

    Ferrer-Rodríguez J P, Saura J M, Fernández E F, Almonacid F, Talavera D L, Pérez-Higueras P 2020 Opt. Express 28 6609Google Scholar

    [20]

    Huang F, Ren H, Shen Y, Wang P F 2021 Appl. Opt. 60 2574Google Scholar

    [21]

    Sun Q L, Wang C L, Fu Q, Dun X, Heidrich W 2021 ACM Trans. Graph. 40 71Google Scholar

    [22]

    Halé A, Trouvé-Peloux P, Volatier J B 2021 Opt. Express 29 34748Google Scholar

    [23]

    Liu A Q, Su L J, Yuan Y, Ding X M 2020 Opt. Express 28 2251Google Scholar

    [24]

    Marschner S, Shirley P 2022 Fundamentals of Computer Graphics (5th Ed.) (New York: CRC Press) pp80–95

    [25]

    Higham N J 2002 Accuracy and Stability of Numerical Algorithms (2nd Ed.) (Philadelphia: SIAM) pp35–60

    [26]

    Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P 2007 ACM Trans. Math. Softw. 33 13Google Scholar

  • 图 1  面型坐标系与全局坐标系

    Fig. 1.  Surface frame and global frame

    图 2  重投影

    Fig. 2.  Reprojection

    图 3  光线方向向量自适应缩放

    Fig. 3.  Adaptive scaling for ray's directional vector

    图 4  坐标变换

    Fig. 4.  Transformation of coordinates

    图 5  几何计算与MPFR结合验证光线追迹精度

    Fig. 5.  Verification of ray tracing precision combining geometric computing and MPFR

    图 6  MPFR四精度浮点数标准点

    Fig. 6.  MPFR's quadruple precision floating-point numbers on unit sphere

    图 7  卡塞格林型空间相机

    Fig. 7.  Cassegrain space camera

    图 8  离轴三反型空间相机

    Fig. 8.  Off-axis three-mirror-anastigmat space camera

    表 1  光线始点对光线追迹结果的影响

    Table 1.  Results of ray tracing algorithm with different ray original points

    光线始点 算法类别 交点$ P $坐标 残差$ |F(P_x, P_y, P_z)| $
    $ P_x $ $ P_y $ $ P_z $
    $ O(0, 0, -4\sqrt{2}(\sqrt{3}+1) $ MPFR 0 5.65685424949238 –5.65685424949238 1.42108547152020$ \times 10^{-14} $
    本文方法 0 5.65685424949238 –5.65685424949237 1.27897692436818$ \times 10^{-13} $
    原有方法 0 5.65685425535717 –5.65685423933425 3.04772385106844$ \times 10^{-9} $
    $ O_1(0, -10^5, -10^5\sqrt{3}-4\sqrt{2}(\sqrt{3}+1) $ MPFR 0 5.65685424949238 –5.65685424949238 1.42108547152020$ \times 10^{-14} $
    本文方法 0 5.65685424949238 –5.65685424949237 1.27897692436818$ \times 10^{-15} $
    原有方法 0 5.65685252461116 –5.65685719583416 1.38192605021459$ \times 10^{-5} $
    $ O_2(0, -10^6, -10^6\sqrt{3}-4\sqrt{2}(\sqrt{3}+1) $ MPFR 0 5.65685424949238 –5.65685424949238 1.42108547152020$ \times 10^{-14} $
    本文方法 0 5.65685424949238 –5.65685424949237 1.27897692436818$ \times 10^{-13} $
    原有方法 0 5.65709940693341 –5.65642958320677 2.03067029689663$ \times 10^{-3} $
    $ O_3(0, -10^7, -10^76\sqrt{3}-4\sqrt{2}(\sqrt{3}+1) $ MPFR 0 5.65685424949238 –5.65685424949238 1.42108547152020$ \times 10^{-14} $
    本文方法 0 5.65685424949238 –5.65685424949237 1.27897692436818$ \times 10^{-13} $
    原有方法 0 5.66135398671031 –5.64906043559312 3.71872321756541$ \times 10^{-2} $
    $ O_4(0, -10^8, -10^8\sqrt{3}-4\sqrt{2}(\sqrt{3}+1) $ MPFR 0 5.65685424949238 –5.65685424949238 1.42108547152020$ \times 10^{-14} $
    本文方法 0 5.65685424949238 –5.65685424949237 1.27897692436818$ \times 10^{-13} $
    原有方法 0 6.69213041663169 –3.86370331048965 4.28718721530413$ \times 10^{0} $
    $ O_5(0, -10^9, -10^9\sqrt{3}-4\sqrt{2}(\sqrt{3}+1) $ MPFR 0 5.65685424949238 –5.65685424949238 1.42108547152020$ \times 10^{-14} $
    本文方法 0 5.65685424949238 –5.65685424949237 1.27897692436818$ \times 10^{-13} $
    原有方法 0 –15.9352867603302 –43.0555386543273 2.04371277294824$ \times 10^{3} $
    下载: 导出CSV

    表 2  不同光线追迹方法结果

    Table 2.  Results of different ray tracing algorithms

    光线编号 算法类别 交点$ P $坐标 残差$ |F(P_x, P_y, P_z)| $
    $ P_x $ $ P_y $ $ P_z $
    1 MPFR 0.379693092393262 0.541344968359402 –0.750185830858461 3.33066907387547$ \times 10^{-16} $
    本文方法 0.379693092393262 0.541344968359402 –0.750185830858461 3.33066907387547$ \times 10^{-16} $
    原有方法 0.379693074143900 0.541344942340492 –0.750185794801938 9.61269086552363$ \times 10^{-8} $
    2 MPFR –0.278818336478534 0.915513779528807 0.289991128719866 0
    本文方法 –0.278818336478534 0.915513779528807 0.289991128719866 0
    原有方法 –0.278818323077561 0.915513735526051 0.289991114781891 9.61269088772809$ \times 10^{-8} $
    3 MPFR –0.831816250860921 –0.330299029958951 0.446076535598833 2.22044604925031$ \times 10^{-16} $
    本文方法 –0.831816250860921 –0.330299029958951 0.446076535598833 2.22044604925031$ \times 10^{-16} $
    原有方法 –0.831816210880958 0.330299014083639 0.446076514158853 9.61269082111471$ \times 10^{-8} $
    下载: 导出CSV

    表 3  卡塞格林型空间相机参数列表

    Table 3.  Parameter list for Cassegrain space camera

    序号 表面类型 曲率半径 厚度 材料 膜层 圆锥系数
    0 物面 标准面 Inf 500000000.000000 ———— 0 0
    1 (孔径) 标准面 Inf 4500.000000 ———— 0 0
    2 光阑(孔径) 标准面 –10, 478.500000 –3686.000000 MIRROR 0 –1.05000
    3 标准面 –3, 846.00000 3689.000000 MIRROR 0 –2.50000
    4 标准面 Inf 807.00000 ———— 0 0
    5 标准面 Inf 2, 700.000000 ———— 0 0
    6 标准面 1560.200000 150.000000 SILICA 0 0
    7 标准面 5398.400000 210.000000 ———— 0 0
    8 标准面 –2746.700000 110.000000 SILICA 0 0
    9 标准面 4516.200000 185.000000 ———— 0 0
    10 标准面 –2790.900000 100.000000 SILICA 0 0
    11 标准面 1837.600000 150.000000 ———— 0 0
    12 标准面 Inf 0.700000 BK7 0 0
    13 标准面 Inf 0.750000 ———— 0 0
    14 像面 标准面 Inf ———— ———— 0 0
    下载: 导出CSV

    表 4  卡塞格林型空间相机光线追迹结果

    Table 4.  Results of ray tracing algorithm for Cassegrain space camera

    面序号 算法类别 交点$ P $坐标 残差$ |F(P_x, P_y, P_z)| $
    $ P_x $ $ P_y $ $ P_z $
    OBJ 本文方法 0 4.00000000000000$ \times 10^{6} $ 0
    美国商业软件Zemax 0 4.00000000000000$ \times 10^{6} $ 0
    1 本文方法 0 1.53512783172994$ \times 10^{3} $ 0 6.86463863530662$ \times 10^{-9} $
    美国商业软件Zemax 0 1.53512783170000$ \times 10^{3} $ 0 2.30754721997073$ \times 10^{-8} $
    2 本文方法 0 1.49999999999948$ \times 10^{3} $ –1.07335208171627$ \times 10^{2} $ 4.68958205601666$ \times 10^{-13} $
    美国商业软件Zemax 0 1.50000000000000$ \times 10^{3} $ –1.07335208170000$ \times 10^{2} $ 1.70095404428139$ \times 10^{-9} $
    3 本文方法 0 4.16656071439095$ \times 10^{2} $ –2.24707333697088$ \times 10^{1} $ 1.70530256582424$ \times 10^{-13} $
    美国商业软件Zemax 0 4.16656071440000$ \times 10^{2} $ –2.24707333700000$ \times 10^{1} $ 1.93832505601677$ \times 10^{-10} $
    4 本文方法 0 1.25622942628122$ \times 10^{2} $ 0 1.14219744773436$ \times 10^{-9} $
    美国商业软件Zemax 0 1.25622942630000$ \times 10^{2} $ 0 3.02019032005774$ \times 10^{-9} $
    5 本文方法 0 6.23424396084419$ \times 10^{1} $ 0 9.31940746795590$ \times 10^{-10} $
    美国商业软件Zemax 0 6.23424396090000$ \times 10^{1} $ 0 1.49004364402572$ \times 10^{-9} $
    6 本文方法 0 –1.49943013287087$ \times 10^{2} $ 7.22185051869110$ \times 10^{0} $ 2.16459739021957$ \times 10^{-9} $
    美国商业软件Zemax 0 –1.49943013290000$ \times 10^{2} $ 7.22185051870000$ \times 10^{0} $ 8.48085619509220$ \times 10^{-7} $
    7 本文方法 0 –1.53288434563366$ \times 10^{2} $ 2.17676371435573$ \times 10^{0} $ 4.69299266114831$ \times 10^{-10} $
    美国商业软件Zemax 0 –1.53288434560000$ \times 10^{2} $ 2.17676371440000$ \times 10^{0} $ 1.51018321048468$ \times 10^{-6} $
    8 本文方法 0 –1.62777534965079$ \times 10^{2} $ –4.82758062839639$ \times 10^{0} $ 1.53522705659270$ \times 10^{-9} $
    美国商业软件Zemax 0 –1.62777534960000$ \times 10^{2} $ –4.82758062840000$ \times 10^{0} $ 1.67483449331485$ \times 10^{-6} $
    9 本文方法 0 –1.68760549772527$ \times 10^{2} $ 3.15420842636740$ \times 10^{0} $ 1.62981450557709$ \times 10^{-9} $
    美国商业软件Zemax 0 –1.68760549770000$ \times 10^{2} $ 3.15420842640000$ \times 10^{0} $ 1.14553768071346$ \times 10^{-6} $
    10 本文方法 0 –1.84834455036683$ \times 10^{2} $ –6.12729217781634$ \times 10^{0} $ 4.67116478830576$ \times 10^{-9} $
    美国商业软件Zemax 0 –1.84834455040000$ \times 10^{2} $ –6.12729217780000$ \times 10^{0} $ 1.32187415147200$ \times 10^{-6} $
    11 本文方法 0 –1.94567071101658$ \times 10^{2} $ 1.03295178756579$ \times 10^{1} $ 3.26690496876836$ \times 10^{-9} $
    美国商业软件Zemax 0 –1.94567071100000$ \times 10^{2} $ 1.03295178760000$ \times 10^{1} $ 1.89214915735647$ \times 10^{-6} $
    12 本文方法 0 –2.18853927906069$ \times 10^{2} $ 0 5.68434188608080$ \times 10^{-13} $
    美国商业软件Zemax 0 –2.18853927910000$ \times 10^{2} $ 0 3.93043819713057$ \times 10^{-9} $
    13 本文方法 0 –2.18933499087856$ \times 10^{2} $ 0 1.08002495835535$ \times 10^{-12} $
    美国商业软件Zemax 0 –2.18933499090000$ \times 10^{2} $ 0 2.14291162592417$ \times 10^{-9} $
    14 本文方法 0 –2.19063914207259$ \times 10^{2} $ 0 7.95807864051312$ \times 10^{-13} $
    美国商业软件Zemax 0 –2.19063914210000$ \times 10^{2} $ 0 2.74022227131354$ \times 10^{-9} $
    下载: 导出CSV

    表 5  离轴三反型空间相机光学结构参数列表

    Table 5.  Parameter list for off-axis three-mirror-anastigmat space camera

    序号 表面类型 曲率半径 厚度 材料 膜层 净口径 机械半径 圆锥系数
    0 物面-标准面 Inf Inf ———— 0 Inf Inf 0
    1 标准面 Inf 633.705045750000 ———— 0 367.133805130855 367.133805130855 0
    2 偶次非球面 –2692.02764249986 –633.705045750000 MIRROR 0 271.014896814696 271.014896814696 –2.60071000000000
    3 光阑-偶次非球面 –963.158099999982 633.705045750000 MIRROR 0 45.500175946250 45.500175946250 –0.76689900000000
    4 偶次非球面 –1476.14695499995 –1132.48912577100 MIRROR 0 251.605408250266 251.605408250266 0.01160100000000
    5 像面-标准面 Inf ———————— ———— 0 231.196769640532 231.196769640532 0
    下载: 导出CSV

    表 6  离轴三反型空间相机单光线追迹与Zemax数值比较

    Table 6.  Single ray tracing for off-axis three-mirror-anastigmat space camera

    面序号 算法类别 交点$ P $坐标 残差$ |F(P_x, P_y, P_z)| $
    $ P_x $ $ P_y $ $ P_z $
    OBJ 本文方法 0 Inf Inf 0
    美国商业软件Zemax 0 Inf Inf 0
    1 本文方法 0 –2.01651556349517$ \times 10^{2} $ 0 4.62705429526977$ \times 10^{-11} $
    美国商业软件Zemax 0 –2.01651556350000$ \times 10^{2} $ 0 4.36727987107588$ \times 10^{-10} $
    2 本文方法 0 –1.03337392022989$ \times 10^{2} $ –1.98221886405031$ \times 10^{0} $ 6.78487441703801$ \times 10^{-13} $
    美国商业软件Zemax 0 –1.03337392020000$ \times 10^{2} $ –1.98221886410000$ \times 10^{0} $ 1.63615205928275$ \times 10^{-10} $
    3 本文方法 0 4.55199992296308$ \times 10^{1} $ –1.07580474621568$ \times 10^{0} $ 3.79696274421804$ \times 10^{-14} $
    美国商业软件Zemax 0 4.55199992300000$ \times 10^{1} $ –1.07580474620000$ \times 10^{0} $ 3.30953042748661$ \times 10^{-11} $
    4 本文方法 0 2.52430579518327$ \times 10^{2} $ –2.17467853091218$ \times 10^{1} $ 1.98810369209101$ \times 10^{-13} $
    美国商业软件Zemax 0 2.52430579520000$ \times 10^{2} $ –2.17467853090000$ \times 10^{1} $ 4.12472341438513$ \times 10^{-10} $
    5 本文方法 0 2.32101258958268$ \times 10^{2} $ 0 6.82121026329696$ \times 10^{-13} $
    美国商业软件Zemax 0 2.32101258960000$ \times 10^{2} $ 0 1.73130842995306$ \times 10^{-9} $
    下载: 导出CSV
    Baidu
  • [1]

    郭疆, 朱磊, 赵继, 龚大鹏 2021 光学精密工程 27 1138Google Scholar

    Guo J, Zhu L, Zhao J, Gong D P 2021 Opt. Precision Eng. 27 1138Google Scholar

    [2]

    高洋, 王书新, 齐光, 孙斌, 伞兵, 李景林 2022 光学技术 48 562Google Scholar

    Gao Y, Wang S X, Qi G, Sun B, San B, Li J L 2022 Opt. Techn. 48 562Google Scholar

    [3]

    孟庆宇, 汪洪源, 王维, 秦子长, 王晓东 2021 光学精密工程 29 72Google Scholar

    Meng Q Y, Wang H Y, Wang W, Qin Z C, Wang X D 2021 Opt. Precision Eng. 29 72Google Scholar

    [4]

    Zhong C L, Sang X Z, Yan B B, Li H, Chen D, Qin X J 2022 Opt. Express 30 40087Google Scholar

    [5]

    Appel A 1968 Proceedings of Spring Joint Computer Conference Atlantic City, New Jersey, USA, 30 April–2 May 1968 pp37–45

    [6]

    Whitted T 1980 Commun. ACM 23 6

    [7]

    Veach E 1997 Ph. D. Dissertation (Stanford: Stanford University)

    [8]

    Braddick H J J 1960 Rep. Prog. Phys. 23 154Google Scholar

    [9]

    王之江 1985 光学设计理论基础 (第二版) (北京: 科学出版社) 第3—36 页

    Wang Z J 1985 Fundamental Theory of Lens Design (2nd Ed.) (Beijing: Science Press) pp3–36 (in Chinese)

    [10]

    王涌天 1990 光学技术 5 2

    Wang Y T 1990 Opt. Techn. 5 2

    [11]

    李林, 安连生 2002 计算机辅助光学设计的理论与应用 (北京: 国防工业出版社) 第1—38 页

    Li L, An L S 2002 Theory and Application of Computer Aided Optical Design (Beijing: National Defense Industry Press) pp1–38 (in Chinese)

    [12]

    李晓彤, 岑兆丰 2021 几何光学·像差·光学设计 (第4 版) (杭州: 浙江大学出版社) 第162—179 页

    Li X T, Cen Z F 2021 Geometrical Optics, Aberrations and Optical Design (4th Ed.) (Hangzhou: Zhejiang University Press) pp162–179 (in Chinese)

    [13]

    张以谟, 张红霞, 贾大功 2021 应用光学 (第5版) (北京: 电子工业出版社) 第14—21 页

    Zhang Y M, Zhang H X, Jia D G 2021 Applied Optics (5th Ed.) (Beijing: Publishing House of Electronics Industry) pp14–21(in Chinese)

    [14]

    Marrs A, Shirley P, Wald I 2021 Ray Tracing Gems Ⅱ: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX (1st Ed.) (New York: Apress) pp545–550

    [15]

    步志超, 张淳民, 赵葆常, 朱化春 2009 58 2415Google Scholar

    Bu Z C, Zhang C M, Zhu H C 2009 Acta Phys. Sin. 58 2415Google Scholar

    [16]

    Spence S E, Parks A D 2016 Appl. Opt. 55 C46Google Scholar

    [17]

    王楠, 阮双琛 2020 69 024201Google Scholar

    Wang N, Ruan S C 2020 Acta Phys. Sin. 69 024201Google Scholar

    [18]

    Schedin S, Hallberg P, Behndig A 2017 Appl. Opt. 56 9787Google Scholar

    [19]

    Ferrer-Rodríguez J P, Saura J M, Fernández E F, Almonacid F, Talavera D L, Pérez-Higueras P 2020 Opt. Express 28 6609Google Scholar

    [20]

    Huang F, Ren H, Shen Y, Wang P F 2021 Appl. Opt. 60 2574Google Scholar

    [21]

    Sun Q L, Wang C L, Fu Q, Dun X, Heidrich W 2021 ACM Trans. Graph. 40 71Google Scholar

    [22]

    Halé A, Trouvé-Peloux P, Volatier J B 2021 Opt. Express 29 34748Google Scholar

    [23]

    Liu A Q, Su L J, Yuan Y, Ding X M 2020 Opt. Express 28 2251Google Scholar

    [24]

    Marschner S, Shirley P 2022 Fundamentals of Computer Graphics (5th Ed.) (New York: CRC Press) pp80–95

    [25]

    Higham N J 2002 Accuracy and Stability of Numerical Algorithms (2nd Ed.) (Philadelphia: SIAM) pp35–60

    [26]

    Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P 2007 ACM Trans. Math. Softw. 33 13Google Scholar

  • [1] 黄一帆, 邢阳光, 沈文杰, 彭吉龙, 代树武, 王颖, 段紫雯, 闫雷, 刘越, 李林. 亚角秒空间分辨的太阳极紫外宽波段成像光谱仪光学设计.  , 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展.  , 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [3] 邱乙耕, 范元媛, 颜博霞, 王延伟, 吴一航, 韩哲, 亓岩, 鲁平. 光声光谱仪用三维扩展光源光场整形系统设计与实验.  , 2021, 70(20): 204201. doi: 10.7498/aps.70.20210691
    [4] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响.  , 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [5] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统.  , 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [6] 冯帅, 常军, 胡瑶瑶, 吴昊, 刘鑫. 偏振成像激光雷达与短波红外复合光学接收系统设计与分析.  , 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [7] 雒亮, 夏辉, 刘俊圣, 费家乐, 谢文科. 基于元胞自动机的气动光学光线追迹算法.  , 2020, 69(19): 194201. doi: 10.7498/aps.69.20200532
    [8] 刘飞, 魏雅喆, 韩平丽, 刘佳维, 邵晓鹏. 基于共心球透镜的多尺度广域高分辨率计算成像系统设计.  , 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [9] 冯帅, 常军, 牛亚军, 穆郁, 刘鑫. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法.  , 2019, 68(11): 114201. doi: 10.7498/aps.68.20182253
    [10] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计.  , 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [11] 操超, 廖志远, 白瑜, 范真节, 廖胜. 基于矢量像差理论的离轴反射光学系统初始结构设计.  , 2019, 68(13): 134201. doi: 10.7498/aps.68.20190299
    [12] 张书赫, 邵梦, 周金华. 光线庞加莱球法构建的结构光场及其传输特性研究.  , 2018, 67(22): 224204. doi: 10.7498/aps.67.20180918
    [13] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究.  , 2017, 66(24): 244201. doi: 10.7498/aps.66.244201
    [14] 裴琳琳, 吕群波, 王建威, 刘扬阳. 编码孔径成像光谱仪光学系统设计.  , 2014, 63(21): 210702. doi: 10.7498/aps.63.210702
    [15] 沈本兰, 常军, 王希, 牛亚军, 冯树龙. 三反射主动变焦系统设计.  , 2014, 63(14): 144201. doi: 10.7498/aps.63.144201
    [16] 任洪亮. 有限远共轭显微镜光镊设计和误差分析.  , 2013, 62(10): 100701. doi: 10.7498/aps.62.100701
    [17] 陈灿, 佟亚军, 谢红兰, 肖体乔. Laue弯晶聚焦特性的光线追迹研究.  , 2012, 61(10): 104102. doi: 10.7498/aps.61.104102
    [18] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较.  , 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [19] 董科研, 孙 强, 李永大, 张云翠, 王 健, 葛振杰, 孙金霞, 刘建卓. 折射/衍射混合红外双焦光学系统设计.  , 2006, 55(9): 4602-4607. doi: 10.7498/aps.55.4602
    [20] 王 方, 朱启华, 蒋东镔, 张清泉, 邓 武, 景 峰. 多程放大系统主放大级光学优化设计.  , 2006, 55(10): 5277-5282. doi: 10.7498/aps.55.5277
计量
  • 文章访问数:  5100
  • PDF下载量:  161
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30
  • 修回日期:  2023-02-06
  • 上网日期:  2023-02-17
  • 刊出日期:  2023-04-20

/

返回文章
返回
Baidu
map