搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光外差光谱仪的仪器线型函数研究

卢兴吉 曹振松 谈图 黄印博 高晓明 饶瑞中

引用本文:
Citation:

激光外差光谱仪的仪器线型函数研究

卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中

Instrument line shape function of laser heterodyne spectrometer

Lu Xing-Ji, Cao Zhen-Song, Tan Tu, Huang Yin-Bo, Gao Xiao-Ming, Rao Rui-Zhong
PDF
HTML
导出引用
  • 激光外差是一种基于相干探测原理的高灵敏度光谱检测技术, 因其同时具有很高的光谱分辨能力, 被广泛应用于诸多研究领域. 在光谱测量过程中, 仪器线型函数对吸收谱线的平滑作用, 会对气体浓度的反演结果产生影响. 为了获取激光外差光谱仪的仪器线型函数, 基于激光外差原理和信号处理过程, 对影响仪器线型函数的射频滤波带宽和积分时间等参数进行了分析, 获得了仪器线型函数表达式. 利用自行建立的激光外差光谱仪, 多次测量了3.53 ${\text{μm}}$波段内水汽、甲烷的吸收谱线, 分别将射频滤波频域响应函数和本文获得的仪器线型函数耦合进水汽、甲烷柱浓度的反演. 结果表明, 射频滤波带宽为30 MHz、积分时间分别为10 ms和100 ms时, 光谱仪的实际分辨率分别约为0.005 cm–1和0.025 cm–1; 使用仪器线型函数对积分时间为100 ms时测量的数据进行反演, 透过率残差平方和与甲烷吸收峰值处的残差分别减小16%和100%, 提高了气体浓度反演的准确度.
    Laser heterodyne is a kind of technique based on coherent detection with high sensitivity and spectral resolution for spectrum measurements. For these reasons, it has been widely used in many research fields, such as trace gases’ detection of earth’s or terrestrial planets’ atmosphere. However, when the laser heterodyne spectrometer is used for measuring the spectrum, the instrument line shape (ILS) function usually smooth the spectrum, which affects the inversion results of the gas column density. In previous researches, the radio frequency (RF) filter response function was usually used as the ILS, but recent studies indicated that the ILS without consideration of the influence of lock-in amplifier was not precise enough. In order to obtain the ILS function of the laser heterodyne spectrometer, the main factors which influence the ILS are analyzed, including the RF filter bandwidth, integral time and low-pass filter of lock-in amplifier, and the process is based on the principle of laser heterodyne technology and the flow of heterodyne signal processing. The presented ILS is the convolution of RF filter, wavelength variation in the integral time and the low-pass filter. In addition, for testing the effectiveness of the ILS in this paper, the laser heterodyne spectrometer which was built in our laboratory is used for the multiple measurement of the absorption of water vapor and methane in the band of 3.53 ${\text{μm}}$ and the column densities are retrieved with different ILS. The experimental results show that the actual resolutions of the laser heterodyne spectrometer are about 0.005 cm–1 and 0.025 cm–1 when the integral times are set to be 10 ms and 100 ms respectively. Furthermore, the RF filter response function and the ILS function presented in the paper are respectively used in the procedure of water vapor and methane inversion. The results show that when the ILS function used for the retrieval, the sum of squared residual reduces about 16% and the residuals at the peak of methane absorption reduces almost 100% compared with the scenario when using the RF filter function. Above all, the comprehensive analysis of the laser heterodyne spectrometer in this paper indicates that the ILS function is more precise than pioneering studies and this work will be helpful for retrieving the precise profiles of trace gases.
      通信作者: 曹振松, zscao@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41205021)和中国科学院青年创新促进会(批准号: 2015264)资助的课题.
      Corresponding author: Cao Zhen-Song, zscao@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41205021) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2015264).
    [1]

    Sonnabend G, Krötz P, Schmülling F, Kostiuk T, Goldstein J, Sornig M, Stupar D, Livengood T, Hewagama T, Fast K, Mahieux A 2012 Icarus 217 856Google Scholar

    [2]

    Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, Reno J L 2010 Appl. Phys. Lett. 97 161105Google Scholar

    [3]

    Bernardo C J H 2001 Ph. D. Dissertation (Wollongong: University of Wollongong)

    [4]

    Frey M, Hase F, Blumenstock T, Groß J, Kiel M, Tsidu G M, Schäfer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3047Google Scholar

    [5]

    熊伟, 施海亮, 俞能海 2015 光谱学与光谱分析 35 267Google Scholar

    Xiong W, Shi H L, Yu N H 2015 Spectrosc. Spect. Anal. 35 267Google Scholar

    [6]

    Taguchi M, Okano S, Fukunishi H, Sasano Y 1990 Geo. Res. Lett. 17 2349Google Scholar

    [7]

    Fukunishi H, Okano S, Taguchi M, Ohnuma T 1990 Appl. Opt. 29 2722Google Scholar

    [8]

    Weidmann D, Reburn W J, Smith K M 2007 Appl. Opt. 46 7162Google Scholar

    [9]

    Weidmann D, Tsai T, Macleod N A, Wysocki G 2011 Opt. Lett. 36 1951Google Scholar

    [10]

    Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar

    [11]

    Wilson E L, Mclinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar

    [12]

    Melroy H R, Wilson E L, Clarke G B, Ott L E, Mao J, Ramanathan A K, McLinden M L 2015 Appl. Phys. B 120 609Google Scholar

    [13]

    谈图 2015 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)

    Tan T 2015 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

    [14]

    谈图, 曹振松, 王贵师, 汪磊, 刘锟, 黄印博, 陈卫东, 高晓明 2015 光谱学与光谱分析 35 1516Google Scholar

    Tan T, Cao Z S, Wang G S, Wang L, Liu K, Huang Y B, Chen W D, Gao X M 2015 Spectrosc. Spect. Anal. 35 1516Google Scholar

    [15]

    Blaney T G 1975 Space Sci. Rev. 17 691Google Scholar

    [16]

    Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta A 60 1193Google Scholar

    [17]

    Protopopov V V 2009 Laser Heterodyning (Berlin: Springer-Verlag) pp1−103

    [18]

    Qi C, Huang Y Y, Zhang W S, Zhou D, Wang Y M, Zhu M 2016 IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society Florence, Italy, October 23−26, 2016 p883

    [19]

    Remillard P A, Amorelli M C 1993 US Patent 52 10484 A

    [20]

    曹亚南, 王睿, 王贵师, 朱公栋, 谈图, 王晶晶, 刘锟, 汪磊, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 3626

    Cao Y N, Wang R, Wang G S, Zhu G D, Tan T, Wang J J, Liu K, Wang L, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 3626

    [21]

    卢兴吉, 曹振松, 黄印博, 高晓明, 饶瑞中 2018 光学精密工程 26 1846

    Lu X J, Cao Z S, Huang Y B, Gao X M, Rao R Z 2018 Optics Precis. Eng. 26 1846

  • 图 1  (a)激光外差信号处理流程; (b)信号解调原理图

    Fig. 1.  (a) Diagram of laser heterodyne signal processing; (b) scheme of signal demodulation

    图 2  RF滤波函数与ILS函数

    Fig. 2.  RF filter function and presented ILS function

    图 3  不同积分时间测量的透过率谱

    Fig. 3.  Measured transmittance spectra with different integral time

    图 4  (a)积分时间为10 ms透过率拟合结果及残差; (b)积分时间为100 ms透过率拟合结果及残差

    Fig. 4.  (a) Fitting results of transmittance and residuals with $\tau$ = 10 ms; (b) fitting results of transmittance and residuals with $\tau$ = 100 ms.

    图 5  透过率残差平方和的变化

    Fig. 5.  Variation of sum of squared residual of transmittance

    图 6  不同ILS函数反演出的水汽和甲烷柱浓度变化

    Fig. 6.  Variations of water vapor and methane column density inversed with different ILS function

    Baidu
  • [1]

    Sonnabend G, Krötz P, Schmülling F, Kostiuk T, Goldstein J, Sornig M, Stupar D, Livengood T, Hewagama T, Fast K, Mahieux A 2012 Icarus 217 856Google Scholar

    [2]

    Ren Y, Hovenier J N, Higgins R, Gao J R, Klapwijk T M, Shi S C, Bell A, Klein B, Williams B S, Kumar S, Hu Q, Reno J L 2010 Appl. Phys. Lett. 97 161105Google Scholar

    [3]

    Bernardo C J H 2001 Ph. D. Dissertation (Wollongong: University of Wollongong)

    [4]

    Frey M, Hase F, Blumenstock T, Groß J, Kiel M, Tsidu G M, Schäfer K, Sha M K, Orphal J 2015 Atmos. Meas. Tech. 8 3047Google Scholar

    [5]

    熊伟, 施海亮, 俞能海 2015 光谱学与光谱分析 35 267Google Scholar

    Xiong W, Shi H L, Yu N H 2015 Spectrosc. Spect. Anal. 35 267Google Scholar

    [6]

    Taguchi M, Okano S, Fukunishi H, Sasano Y 1990 Geo. Res. Lett. 17 2349Google Scholar

    [7]

    Fukunishi H, Okano S, Taguchi M, Ohnuma T 1990 Appl. Opt. 29 2722Google Scholar

    [8]

    Weidmann D, Reburn W J, Smith K M 2007 Appl. Opt. 46 7162Google Scholar

    [9]

    Weidmann D, Tsai T, Macleod N A, Wysocki G 2011 Opt. Lett. 36 1951Google Scholar

    [10]

    Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar

    [11]

    Wilson E L, Mclinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar

    [12]

    Melroy H R, Wilson E L, Clarke G B, Ott L E, Mao J, Ramanathan A K, McLinden M L 2015 Appl. Phys. B 120 609Google Scholar

    [13]

    谈图 2015 博士学位论文 (合肥: 中国科学院安徽光学精密机械研究所)

    Tan T 2015 Ph. D. Dissertation (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)

    [14]

    谈图, 曹振松, 王贵师, 汪磊, 刘锟, 黄印博, 陈卫东, 高晓明 2015 光谱学与光谱分析 35 1516Google Scholar

    Tan T, Cao Z S, Wang G S, Wang L, Liu K, Huang Y B, Chen W D, Gao X M 2015 Spectrosc. Spect. Anal. 35 1516Google Scholar

    [15]

    Blaney T G 1975 Space Sci. Rev. 17 691Google Scholar

    [16]

    Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta A 60 1193Google Scholar

    [17]

    Protopopov V V 2009 Laser Heterodyning (Berlin: Springer-Verlag) pp1−103

    [18]

    Qi C, Huang Y Y, Zhang W S, Zhou D, Wang Y M, Zhu M 2016 IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society Florence, Italy, October 23−26, 2016 p883

    [19]

    Remillard P A, Amorelli M C 1993 US Patent 52 10484 A

    [20]

    曹亚南, 王睿, 王贵师, 朱公栋, 谈图, 王晶晶, 刘锟, 汪磊, 梅教旭, 高晓明 2017 光谱学与光谱分析 37 3626

    Cao Y N, Wang R, Wang G S, Zhu G D, Tan T, Wang J J, Liu K, Wang L, Mei J X, Gao X M 2017 Spectrosc. Spect. Anal. 37 3626

    [21]

    卢兴吉, 曹振松, 黄印博, 高晓明, 饶瑞中 2018 光学精密工程 26 1846

    Lu X J, Cao Z S, Huang Y B, Gao X M, Rao R Z 2018 Optics Precis. Eng. 26 1846

  • [1] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究.  , 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [2] 李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图. 激光外差光谱仪模拟风场探测.  , 2022, 71(7): 074204. doi: 10.7498/aps.71.20211252
    [3] 孙永丰, 徐亮, 沈先春, 王钰豪, 徐寒杨, 刘文清. 干涉型红外光谱辐射计仪器线型函数仿真及校正.  , 2021, 70(14): 140701. doi: 10.7498/aps.70.20210302
    [4] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演.  , 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [5] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法.  , 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [6] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [7] 才啟胜, 黄旻, 韩炜, 丛麟骁, 路向宁. 外差式偏振干涉成像光谱技术研究.  , 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [8] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松. 近距离激光外差探测光学极限位移分辨率.  , 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [9] 李成强, 王挺峰, 张合勇, 谢京江, 刘立生, 郭劲. 激光光源线宽对外差探测性能的影响.  , 2016, 65(8): 084206. doi: 10.7498/aps.65.084206
    [10] 马再如, 隋展, 周桂勇, 孙年春, 王屹山, 王向林, 张彬, 张蓉竹. 光谱扫描滤波法提升超强飞秒激光相干信噪比分析.  , 2013, 62(15): 154202. doi: 10.7498/aps.62.154202
    [11] 尹增谦, 武臣, 宫琬钰, 龚之珂, 王永杰. Voigt线型函数及其最大值的研究.  , 2013, 62(12): 123301. doi: 10.7498/aps.62.123301
    [12] 马再如, 隋展, 冯国英, 孙年春, 王屹山, 张彬, 陈建国. 光谱扫描滤波法提升飞秒激光信噪比的理论分析.  , 2012, 61(7): 074206. doi: 10.7498/aps.61.074206
    [13] 赵跃智, 廖桂华, 陈文娟, 曹钦存. TeO2-Nb2O5-BaCl2 玻璃的结构及光学性能研究.  , 2012, 61(23): 237802. doi: 10.7498/aps.61.237802
    [14] 张霖, 张淳民, 简小华. 高层大气风场洛伦兹光谱线型粒子辐射率探测研究.  , 2010, 59(2): 899-906. doi: 10.7498/aps.59.899
    [15] 张淳民, 刘宁, 吴福全. 偏振干涉成像光谱仪中格兰-泰勒棱镜全视场角透过率的分析与计算.  , 2010, 59(2): 949-957. doi: 10.7498/aps.59.949
    [16] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法.  , 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [17] 曹 琳, 王春梅, 陈扬骎, 杨晓华. 光外差腔衰荡光谱理论研究.  , 2006, 55(12): 6354-6359. doi: 10.7498/aps.55.6354
    [18] 刘新元, 谢柏青, 戴远东, 王福仁, 李壮志, 马 平, 谢飞翔, 杨 涛, 聂瑞娟. 射频SQUID心磁图数据自适应滤波研究.  , 2005, 54(4): 1937-1942. doi: 10.7498/aps.54.1937
    [19] 高晖, 刘煜炎, 林洁丽, 石兢, 熊贵光, 张哲华, 田德诚. 速度调制激光光谱线型的研究.  , 2001, 50(8): 1463-1466. doi: 10.7498/aps.50.1463
    [20] 谭维翰, 刘仁红. 含二能级原子共振腔的透过率谱.  , 1991, 40(4): 555-559. doi: 10.7498/aps.40.555
计量
  • 文章访问数:  8442
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-30
  • 修回日期:  2018-11-06
  • 上网日期:  2019-03-12
  • 刊出日期:  2019-03-20

/

返回文章
返回
Baidu
map