Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral analysis techniques in measuring neutron-induced gamma production cross-section

Xiao Shi-Liang Wang Zhao-Hui Wu Hong-Yi Chen Xiong-Jun Sun Qi Tan Bo-Yu Wang Hao Qi Fu-Gang

Citation:

Spectral analysis techniques in measuring neutron-induced gamma production cross-section

Xiao Shi-Liang, Wang Zhao-Hui, Wu Hong-Yi, Chen Xiong-Jun, Sun Qi, Tan Bo-Yu, Wang Hao, Qi Fu-Gang
PDF
HTML
Get Citation
  • In neutron reaction cross-section measurements, the prompt gamma ray method is a method of obtaining cross-section data by measuring the characteristic gamma rays emitted by a nuclear reaction, thereby avoiding the interference generated by competing reaction channels. However, the prompt gamma ray method is an on-line experiment with abundant background sources, high background counts of the obtained experimental spectra, and numerous interferences such as weak peaks, overlapping peaks, Compton scattering peaks, and neutron effect peaks of Ge in HPGe, which cause the difficulty in analysing the on-line experimental spectra and the high uncertainty in the results. In this work, we study and summarise the spectrum analysis techniques of the prompt gamma ray method that can be used for measuring the neutron cross-section, and comprehensively consider the physical processes of the formation of different characteristic peaks of the prompt gamma ray method, so as to reduce the uncertainty of calculating the net area of the effect peaks in the process of on-line experimental spectrum processing. The Compton edge, weak peaks, overlapping peaks, and the neutron response peaks of the HPGe detector on-line experiment are discussed and analysed, and the net area of the effect peaks is accurately extracted by combining several reasonable functions to fit the total energy peak, the background, and the interferences. For the net area of weak peaks, this method can reduce the peak area selection caused fluctuation from 30% to less than 1%, and the difference between the fitted value of the net area and the theoretical value is comparable to the statistical uncertainty; for the overlapping peaks’ decomposition, the difference between the results obtained by this method and the theoretical value is significantly lower than 1%. The reliability of the spectral analysis method is simultaneously verified by efficiency curve analysis and goodness-of-fit calculation.
      Corresponding author: Wang Zhao-Hui, ngamma@163.com ; Qi Fu-Gang, qifugang@xtu.edu.cn
    • Funds: Project supported by the Continuous-Support Basic Scientific Research Project, China (Grant No. BJ010261223282) and the Fund of Innovation Center of Radiation Application, China (Grant No. KFZC2021010101).
    [1]

    葛智刚, 陈永静 2015 科学通报 60 3087

    Ge Z G, Chen Y J 2015 Sci. Bull. 60 3087

    [2]

    卢希庭 2000 原子核物理(北京: 原子能出版社) 第168页

    Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p168

    [3]

    石宗仁 2002 原子核物理评论 19 42Google Scholar

    Shi Z R 2002 Nucl. Phys. Rev. 19 42Google Scholar

    [4]

    EG&G ORTEC 1998 Gamma Vision Software Manual 82

    [5]

    CANBERRA 2002 Gennie2000 Software Manual p113

    [6]

    Hammed M A, Gray P W, Naboulsi A H, Mac Mahon T C 1993 Nucl. Instr. Meth. A 344 543

    [7]

    孙琪, 王朝辉, 张奇玮, 黄翰雄, 任杰, 阮锡超, 刘世龙, 鲍杰, 栾广源, 丁琰琰, 陈雄军, 聂阳波, 刘超, 赵齐, 王金成, 贺国珠, 杜树斌 2022 原子能科学技术 56 816

    Sun Q, Wang Z H, Zhang Q W, Huang H X, Ren J, Ruan X C, Liu S L, Bao J, Luan G Y, Ding Y Y, Chen X J, Nie Y B, Liu C, Zhao Q, Wang J C, He G Z, Du S B 2022 Atomic Energy Science and Technology 56 816

    [8]

    Wu H Y, Li Z H, Tan H, Hua H, Li J, Henning W, Warburton W K, Luo D W, Wang X, Li X Q, Zhang S Q, Xu C, Chen Z Q, Wu C G, Jin Y, Lin J, Jiang D X, Ye Y L 2020 Nucl. Instr. Meth. A 975 164

    [9]

    吴鸿毅, 李智焕, 吴婧, 华辉, 王翔, 李湘庆, 徐川 2021 科学通报 66 3553

    Wu H Y, Li Z H, Wu J, Hua H, Wang X, Li X Q, Xu C 2021 Sci. Bull. 66 3553

    [10]

    Luo D W, Wu H Y, Li Z H, Xu C, Hua H, Li X Q, Wang X, Zhang S Q, Chen Z Q, Wu C G, Jin Y, Lin J 2021 Nucl. Sci. Tech. 32 79Google Scholar

    [11]

    Phillips G W, Marlow K W 1976 Nucl. Instr. Meth. A 137 525Google Scholar

    [12]

    Günter Kanisch 2017 Nucl. Instr. Meth. A 855 118Google Scholar

    [13]

    Helmer R G, Hardy J C, Iacob V E, Sanchez-Vega M, Neilson R G, Nelson J 2003 Nucl. Instr. Meth. A 511 360Google Scholar

    [14]

    Uher J, Roach G, Tickner J 2010 Nucl. Instr. Meth. A 619 457Google Scholar

    [15]

    王思广, 冒亚军, 唐培家, 李泽 2006 核技术 29 495Google Scholar

    Wang S G, Mao Y J, Tang P J, Li Z 2006 Nucl. Sci. Tech. 29 495Google Scholar

    [16]

    卢希庭 2000原子核物理 (北京: 原子能出版社) 第65页

    Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p65

    [17]

    Table of Radioactive Isotopes, Chu S Y F, Ekström L P, Firestone R B http://nucleardata.nuclear.lu.se/toi/listnuc.asp?sql=&Z=32 [2023-11-3]

    [18]

    Anđelić B, Knežević D, Jovančević N, Krmar M, Petrović J, Toth A, Medić Ž, Hansman J 2017 Nucl. Instr. Meth. A 852 80Google Scholar

    [19]

    Gete E, Measday D F, Moftah B A, Saliba M A, Stocki T J 1997 Nucl. Instrum. Methods Phys. A 388 212Google Scholar

    [20]

    Longoria L C, Naboulsi A H, Gray P W, MacMahon T D 1990 Nucl. Instr. Meth. A 299 308Google Scholar

    [21]

    Nelson R O, Fotiades N, Devlin M, Becker J A, Garrett P E, Younes W 2005 AIP Conf. Proc. on Nuclear Data For Science and Technology New Mexico, United States, May 24, 2005 p838

    [22]

    Negret A, Borcea C, Dessagne Ph, Kerveno M, Olacel A, Plompen A J M, Stanoiu M 2014 Phys. Rev. C 90 034602Google Scholar

  • 图 1  瞬发γ射线平台在线实验装置示意图

    Figure 1.  Schematic diagram of online experimental setup of prompt γ ray platform.

    图 2  Clover探测器特征峰参数拟合 (a) δ拟合结果; (b) β拟合结果

    Figure 2.  Clover detector characteristic peak parameter fitting: (a) δ fitting results; (b) β fitting results.

    图 3  Clover探测器不同源距同一能量的特征γ射线峰峰形对比 (a) 344.278 keV射线峰; (b) 1212.948 keV射线峰

    Figure 3.  Comparison of the peak shapes of the characteristic gamma ray peaks of the clover detector at different source distances and the same energy: (a) 344.278 keV ray peak; (b) 1212.948 keV ray peak.

    图 4  同轴HPGe特征峰参数拟合 (a) δ拟合结果; (b) β拟合结果

    Figure 4.  Parameter fitting of coaxial HPGe of the characteristic gamma ray peaks: (a) δ fitting results; (b) β fitting results.

    图 5  同轴HPGe探测器不同源距同一能量的特征γ射线峰峰形对比 (a) 443.965 keV射线峰; (b) 1212.948 keV射线峰

    Figure 5.  Comparison of the peak shapes of the characteristic gamma-ray peaks of coaxial HPGe detectors with different source distances at the same energy: (a) 443.965 keV ray peak; (b) 1212.948 keV ray peak.

    图 6  不同ROI区域本方法拟合结果

    Figure 6.  Fitting results of this method for different ROI regions.

    图 7  152Eu中1085.837 keV与1089.737 keV拟合结果

    Figure 7.  Fitting results of 1085.837 keV and 1089.737 keV in 152Eu.

    图 8  多源刻度谱中409.462 keV与411.116 keV形成的重峰拟合结果

    Figure 8.  Fitting results of overlapping peak formed by 409.462 keV and 411.116 keV in multisource spectrum.

    图 9  是否包含康普顿边缘部分本底拟合结果比较, 其中插图为GammaVision处理效果

    Figure 9.  Comparison of background fitting results with or without Compton edges, insert is GammaVision processing effect.

    图 10  1.2 MeV中子与Fe样品反应的在线实验谱

    Figure 10.  Online experimental spectrum of the reaction of 1.2 MeV neutron with Fe sample.

    图 11  56Fe(n, n' )发射的846.8 keV射线峰本底扣除效果

    Figure 11.  Peak background subtraction effect of 846.8 keV ray emitted by 56Fe(n, n' ).

    图 12  部分非弹性散射峰拟合结果

    Figure 12.  Partial inelastic scattering peak fitting results.

    图 13  56Fe非弹伽马产生截面

    Figure 13.  56Fe inelastic Gamma production cross-section.

    表 1  锗的多种同位素与中子的主要非弹性散射峰[17]

    Table 1.  Major inelastic scattering peaks of various isotopes of Ge with neutrons.

    反应类型 (n, n'γ) (n, n'e)
    锗的同位素 70Ge 72Ge 74Ge 76Ge 70Ge 72Ge
    γ 射线能量/keV 176.2 630.0 595.9 545.5 1215.4 691.6
    1039.3 834.1 608.4 562.9
    867.9 1108.4
    1204.2
    DownLoad: CSV

    表 2  不同ROI区域两种处理方法计数

    Table 2.  Counts of two method for different ROI regions.

    γ射线能量/keVROI区域/chanelGammaVision高斯拟合本工作
    656.163507—3538356737143405
    3496—3549381635523398
    3480—3563274534483344
    841.5744505—4527258827092780
    4484—4547304729472882
    4468—4563446030542947
    DownLoad: CSV

    表 3  三种方法求取121.781 keV的净面积

    Table 3.  Net area of 121.781 keV is obtained by three methods.

    121.781 keVGammaVision本文
    净面积19820682107410
    DownLoad: CSV
    Baidu
  • [1]

    葛智刚, 陈永静 2015 科学通报 60 3087

    Ge Z G, Chen Y J 2015 Sci. Bull. 60 3087

    [2]

    卢希庭 2000 原子核物理(北京: 原子能出版社) 第168页

    Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p168

    [3]

    石宗仁 2002 原子核物理评论 19 42Google Scholar

    Shi Z R 2002 Nucl. Phys. Rev. 19 42Google Scholar

    [4]

    EG&G ORTEC 1998 Gamma Vision Software Manual 82

    [5]

    CANBERRA 2002 Gennie2000 Software Manual p113

    [6]

    Hammed M A, Gray P W, Naboulsi A H, Mac Mahon T C 1993 Nucl. Instr. Meth. A 344 543

    [7]

    孙琪, 王朝辉, 张奇玮, 黄翰雄, 任杰, 阮锡超, 刘世龙, 鲍杰, 栾广源, 丁琰琰, 陈雄军, 聂阳波, 刘超, 赵齐, 王金成, 贺国珠, 杜树斌 2022 原子能科学技术 56 816

    Sun Q, Wang Z H, Zhang Q W, Huang H X, Ren J, Ruan X C, Liu S L, Bao J, Luan G Y, Ding Y Y, Chen X J, Nie Y B, Liu C, Zhao Q, Wang J C, He G Z, Du S B 2022 Atomic Energy Science and Technology 56 816

    [8]

    Wu H Y, Li Z H, Tan H, Hua H, Li J, Henning W, Warburton W K, Luo D W, Wang X, Li X Q, Zhang S Q, Xu C, Chen Z Q, Wu C G, Jin Y, Lin J, Jiang D X, Ye Y L 2020 Nucl. Instr. Meth. A 975 164

    [9]

    吴鸿毅, 李智焕, 吴婧, 华辉, 王翔, 李湘庆, 徐川 2021 科学通报 66 3553

    Wu H Y, Li Z H, Wu J, Hua H, Wang X, Li X Q, Xu C 2021 Sci. Bull. 66 3553

    [10]

    Luo D W, Wu H Y, Li Z H, Xu C, Hua H, Li X Q, Wang X, Zhang S Q, Chen Z Q, Wu C G, Jin Y, Lin J 2021 Nucl. Sci. Tech. 32 79Google Scholar

    [11]

    Phillips G W, Marlow K W 1976 Nucl. Instr. Meth. A 137 525Google Scholar

    [12]

    Günter Kanisch 2017 Nucl. Instr. Meth. A 855 118Google Scholar

    [13]

    Helmer R G, Hardy J C, Iacob V E, Sanchez-Vega M, Neilson R G, Nelson J 2003 Nucl. Instr. Meth. A 511 360Google Scholar

    [14]

    Uher J, Roach G, Tickner J 2010 Nucl. Instr. Meth. A 619 457Google Scholar

    [15]

    王思广, 冒亚军, 唐培家, 李泽 2006 核技术 29 495Google Scholar

    Wang S G, Mao Y J, Tang P J, Li Z 2006 Nucl. Sci. Tech. 29 495Google Scholar

    [16]

    卢希庭 2000原子核物理 (北京: 原子能出版社) 第65页

    Lu X T 2000 Nuclear Physics (Beijing: Atomic Energy Press) p65

    [17]

    Table of Radioactive Isotopes, Chu S Y F, Ekström L P, Firestone R B http://nucleardata.nuclear.lu.se/toi/listnuc.asp?sql=&Z=32 [2023-11-3]

    [18]

    Anđelić B, Knežević D, Jovančević N, Krmar M, Petrović J, Toth A, Medić Ž, Hansman J 2017 Nucl. Instr. Meth. A 852 80Google Scholar

    [19]

    Gete E, Measday D F, Moftah B A, Saliba M A, Stocki T J 1997 Nucl. Instrum. Methods Phys. A 388 212Google Scholar

    [20]

    Longoria L C, Naboulsi A H, Gray P W, MacMahon T D 1990 Nucl. Instr. Meth. A 299 308Google Scholar

    [21]

    Nelson R O, Fotiades N, Devlin M, Becker J A, Garrett P E, Younes W 2005 AIP Conf. Proc. on Nuclear Data For Science and Technology New Mexico, United States, May 24, 2005 p838

    [22]

    Negret A, Borcea C, Dessagne Ph, Kerveno M, Olacel A, Plompen A J M, Stanoiu M 2014 Phys. Rev. C 90 034602Google Scholar

  • [1] Luo Hao-Tian, Zhang Qi-Wei, Luan Guang-Yuan, Wang Xiao-Yu, Zou Chong, Ren Jie, Ruan Xi-Chao, He Guo-Zhu, Bao Jie, Sun Qi, Huang Han-Xiong, Wang Zhao-Hui, Wu Hong-Yi, Gu Min-Hao, Yu Tao, Xie Li-Kun, Chen Yong-Hao, An Qi, Bai Huai-Yong, Bao Yu, Cao Ping, Chen Hao-Lei, Chen Qi-Ping, Chen Yu-Kai, Chen Zhen, Cui Zeng-Qi, Fan Rui-Rui, Feng Chang-Qing, Gao Ke-Qing, Han Chang-Cai, Han Zi-Jie, He Yong-Cheng, Hong Yang, Huang Wei-Ling, Huang Xi-Ru, Ji Xiao-Lu, Ji Xu-Yang, Jiang Wei, Jiang Hao-Yu, Jiang Zhi-Jie, Jing Han-Tao, Kang Ling, Kang Ming-Tao, Li Bo, Li Chao, Li Jia-Wen, Li Lun, Li Qiang, Li Xiao, Li Yang, Liu Rong, Liu Shu-Bin, Liu Xing-Yan, Mu Qi-Li, Ning Chang-Jun, Qi Bin-Bin, Ren Zhi-Zhou, Song Ying-Peng, Song Zhao-Hui, Sun Hong, Sun Kang, Sun Xiao-Yang, Sun Zhi-Jia, Tan Zhi-Xin, Tang Hong-Qing, Tang Jing-Yu, Tang Xin-Yi, Tian Bin-Bin, Wang Li-Jiao, Wang Peng-Cheng, Wang Qi, Wang Tao-Feng, Wen Jie, Wen Zhong-Wei, Wu Qing-Biao, Wu Xiao-Guang, Wu Xuan, Yang Yi-Wei, Yi Han, Yu Li, Yu Yong-Ji, Zhang Guo-Hui, Zhang Lin-Hao, Zhang Xian-Peng, Zhang Yu-Liang, Zhang Zhi-Yong, Zhao Yu-Bin, Zhou Lu-Ping, Zhou Zu-Ying, Zhu Dan-Yang, Zhu Ke-Jun, Zhu Peng, Zhu Xing-Hua. Neutron capture reaction cross-section data processing and resonance parameter analysis of 197Au based on white light neutron source. Acta Physica Sinica, 2024, 73(7): 072801. doi: 10.7498/aps.73.20231957
    [2] Zhang Zhan-Gang, Yang Shao-Hua, Lin Qian, Lei Zhi-Feng, Peng Chao, He Yu-Juan. Experimental study on real-time measurement of single-event effects of 14 nm FinFET and 28 nm planar CMOS SRAMs based on Qinghai-Tibet Plateau. Acta Physica Sinica, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [3] Zhang Jiang-Lin, Jiang Bing, Chen Yong-Hao, Guo Zi-An, Wang Xiao-He, Jiang Wei, Yi Han, Han Jian-Long, Hu Ji-Feng, Tang Jing-Yu, Chen Jin-Gen, Cai Xiang-Zhou. Measurement of total neutron cross section of natural lithium at China Spallation Neutron Source Back-n facility. Acta Physica Sinica, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [4] Li Wei, Bai Yu-Rong, Guo Hao-Xuan, He Chao-Hui, Li Yong-Hong. Geant4 simulation of neutron displacement damage effect in InP. Acta Physica Sinica, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields. Acta Physica Sinica, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [6] Deng Li, Li Rui, Wang Xin, Fu Yuan-Guang. Monte Carlo simulation technology based on characteristic γ-ray spectrum analysis. Acta Physica Sinica, 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [7] Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei. Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices. Acta Physica Sinica, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [8] He Tie1\2\3, Xiao Jun2\3, An Li2\3, Yang Jian2\3, Zheng Pu2\3A novel method to measure prompt fission neutron spectrum based on fission γ tagging technique. Acta Physica Sinica, 2018, 67(21): 212501. doi: 10.7498/aps.67.20180563
    [9] Deng Pei-Na, Yi Zhou, Zhang Li-Li, Li Hua. Analysis of the dynamics of water confined in hydrated calcium silica(C-S-H) based on the quasi-elastic neutron scattering spectra. Acta Physica Sinica, 2016, 65(10): 106101. doi: 10.7498/aps.65.106101
    [10] Yi Zhou, Zhang Li-Li, Li Hua. Spectral analysis of water dynamics in cement paste by quasi-elastic neutron scattering. Acta Physica Sinica, 2015, 64(5): 056101. doi: 10.7498/aps.64.056101
    [11] Li Xiao-Ling, Lin Shi-Yao, Hu Li-Qun, Xu Ping, Duan Yan-Min, Mao Song-Tao, Zhang Ji-Zhong, Wang Xiang-Qi, Zhong Guo-Qiang. Study of neutron radiation behavior for RF heating on HT-7. Acta Physica Sinica, 2011, 60(1): 012901. doi: 10.7498/aps.60.012901
    [12] Yu Zhi-Qiang, Xie Quan, Xiao Qing-Quan, Zhao Ke-Jie. Spectrum analysis of X-ray based on Bohr-Sommerfeld quantum theory. Acta Physica Sinica, 2009, 58(8): 5318-5322. doi: 10.7498/aps.58.5318
    [13] Yu Chen-Hui, Zhang Bo, Yu Li-Bo, Li Ya-Jun, Lu Wei, Shen Xue-Chu. Photo-thermal ionization spectroscopy of shallow acceptors in high purity germanium. Acta Physica Sinica, 2008, 57(2): 1097-1101. doi: 10.7498/aps.57.1097
    [14] Zeng Xiong-Hui, Zhao Guang-Jun, Xu Jun. Spectra analysis of Ce:YAlOZr3 single crystals grown by temperature gradient technique. Acta Physica Sinica, 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
    [15] He Chao-Hui, Geng Bin, Yang Hai-Liang, Chen Xiao-Hua, Li Guo-Zheng, Wang Yan-Ping. Mechanism of radiation effects in floating gate ROMs. Acta Physica Sinica, 2003, 52(9): 2235-2238. doi: 10.7498/aps.52.2235
    [16] CHENG YU-HANG, WU YI-PING, CHEN JIAN-GUO, QIAO XUE-LIANG, XIE CHANG-SHENG, YANG YE-ZHI, MUO SHAO-BO. STUDY ON THE STRUCTURE OF a-C∶H(N) FILMS BY XPS. Acta Physica Sinica, 1998, 47(1): 83-88. doi: 10.7498/aps.47.83
    [17] WANG YONG-ZHONG. THEORETICAL ANALYSIS OF THE EMPIRICAL COEFFICIENT METHODS FOR FLUORESCENT X-RAY SPECTROMETRY. Acta Physica Sinica, 1981, 30(11): 1520-1527. doi: 10.7498/aps.30.1520
    [18] RESEARCH INSTITUTE OP IRON &. STEEL. IMPROVEMENT OF ACCURACY IN THE SPECTRO-CHEMICAL ANALYSIS OF HIGH ALLOY STEELS. Acta Physica Sinica, 1959, 15(6): 285-296. doi: 10.7498/aps.15.285
    [19] ПРИМЕНЕНИЕ МЕТОДА СПЕКТРАЛЬНОГО АНАЛИЗА ДЛЯ ПОРОШКООБРАЗНЫХ ОБРАЗЦОВ К ЭЛЕКТРОВАКУУМНЫМ МАТЕРИАЛАМ. Acta Physica Sinica, 1959, 15(6): 282-284. doi: 10.7498/aps.15.282
    [20] Shi Shi-yuan;Yang Ming-zhen. AN INTEGRAL PHOTOELECTRIC METHOD FOR QUANTITATIVE SPECTRO-ANAIYSIS. Acta Physica Sinica, 1956, 12(6): 577-584. doi: 10.7498/aps.12.577
Metrics
  • Abstract views:  2010
  • PDF Downloads:  40
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2023
  • Accepted Date:  29 December 2023
  • Available Online:  09 January 2024
  • Published Online:  05 April 2024

/

返回文章
返回
Baidu
map