搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米级静态随机存取存储器的α粒子软错误机理研究

张战刚 叶兵 姬庆刚 郭金龙 习凯 雷志锋 黄云 彭超 何玉娟 刘杰 杜广华

引用本文:
Citation:

纳米级静态随机存取存储器的α粒子软错误机理研究

张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华

Mechanisms of alpha particle induced soft errors in nanoscale static random access memories

Zhang Zhan-Gang, Ye Bing, Ji Qing-Gang, Guo Jin-Long, Xi Kai, Lei Zhi-Feng, Huang Yun, Peng Chao, He Yu-Juan, Liu Jie, Du Guang-Hua
PDF
HTML
导出引用
  • 本文使用镅-241作为α粒子放射源, 开展65和90 nm静态随机存取存储器软错误机理研究, 结合反向分析、TRIM和CREME-MC蒙特卡罗仿真揭示α粒子在器件中的能量输运过程、沉积能量谱和截面特性. 结果表明, 65 nm器件的软错误敏感性远高于90 nm器件, 未发现翻转极性. 根据西藏羊八井地区4300 m海拔的实时测量软错误率、热中子敏感性和α粒子软错误率, 演算得到65 nm静态随机存取存储器在北京海平面应用的总体软错误率为429 FIT/Mb, 其中α粒子的贡献占比为70.63%. 基于反向分析结果构建器件三维仿真模型, 研究α粒子入射角度对单粒子翻转特性的影响, 发现随着入射角度从0°增大至60°, 灵敏区中粒子数峰值处对应的沉积能量值减小了40%, 原因为衰变α粒子的能量较低, 入射角度增大导致α粒子穿过空气层和多层金属布线的厚度增大1/cos(θ)倍, 引起粒子能量减小, 有效LET值随之减小. 随着入射角度从0°增大至60°, 单粒子翻转截面增大了79%, 原因为65 nm器件灵敏区中明显的单粒子翻转边缘效应.
    In this paper, the Am-241 is used as an alpha particle radioactive source to investigate the soft error mechanism in 65-nm and 90-nm static random accessmemory (SRAM). Combining reverse analysis, TRIM and CREME-MC Monte Carlo simulation, the energy transport process, deposited energy spectrum and cross-section characteristics of alpha particles in the device are revealed. The results show that the soft error sensitivity of the 65-nm device is much higher than that of the 90-nm device, and no flipping polarity is found. According to the real-time measured soft error rate at an altitude of 4300 m in Tibetan Yangbajing area, the thermal neutron sensitivity and alpha particle soft error rate, the overall soft error rate of 65-nm SRAM used at sea level of Beijing city is 429 FIT/Mb, and the contribution from alpha particles is 70.63%. Based on the results of reverse analysis, a three-dimensional simulation model of the device is constructed to study the influence of the incident angle of alpha particles on the single event upset characteristics. It is found that the corresponding deposition energy value at the peak of the number of particles in the sensitive region decreases by 40% with the incident angle increasing from 0° to 60°. While the single event upset cross sectionincreases by 79% due to the apparent single event upset edge effect in a sensitive region of the 65-nm device.
      通信作者: 雷志锋, leizhifeng@ceprei.com ; 黄云, yunhuang@ceprei.com
    • 基金项目: 国家自然科学基金(批准号: 61704031)、广东省科技计划(批准号: 2017B090901068、2017B090921001)和广州市科技计划(批准号: 201707010186)资助的课题
      Corresponding author: Lei Zhi-Feng, leizhifeng@ceprei.com ; Huang Yun, yunhuang@ceprei.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61704031), the Science and Technology Research Project of Guangdong Province, China (Grant Nos. 2017B090901068, 2017B090921001), and the Science and Technology Plan Project of Guangzhou, China (Grant No. 201707010186)
    [1]

    May T C, Woods M H 1979 IEEE Trans. Electron. Dev. ED-26 2

    [2]

    Bhuva B 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1−5, 2018 p34.4.1

    [3]

    Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar

    [4]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [5]

    JESD89 A Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006 [标准]

    [6]

    Auden E C, Quinn H M, Wender S A, O’ Donnell J M, Lisowski P W, George J S, Xu N, Black D A, Black J D 2020 IEEE Trans. Nucl. Sci. 67 29Google Scholar

    [7]

    Weulersse C, Houssany S, Guibbaud N, Segura-Ruiz J, Beaucour J, Miller F, Mazurek M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar

    [8]

    Autran J L, Munteanu D, Sauze S, Gasiot G, Roche P 2014 IEEE Radiation Effects Data Workshop (REDW) Paris, France, July 14−18, 2014 p1

    [9]

    Lee S, Uemura T, Monga U, Choi J H, Kim G, Pae S 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, April 2−6, 2017 pSE-1.1

    [10]

    Uemura T, Lee S, Min D, Moon I, Lim J, Lee S, Sagong H C, Pae S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 pSE.1-1

    [11]

    Fang Y, Oates A S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 p4C.2-1

    [12]

    Zhang Z, Lei Z, Tong T, Li X, Xi K, Peng C, Shi Q, He Y, Huang Y, En Y 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [13]

    The Stopping and Range of Ions in Matter, Ziegler J F http://www.srim.org/ [2019-7-3]

    [14]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [15]

    Adams J H, Barghouty A F, Mendenhall M H, Reed R A, Sierawski B D, Warren K M, Watts J W, Weller R A 2012 IEEE Trans. Nucl. Sci. 59 3141Google Scholar

    [16]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [17]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Warren K M, Sierawski B D, Massengill L W 2010 IEEE Trans. Nucl. Sci. 57 1726Google Scholar

    [18]

    Mendenhall M H, Weller R A 2012 Nucl. Instrum. Methods A 667 38Google Scholar

    [19]

    Zhang Z, Lei Z, En Y, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19−23, 2016 PH14

    [20]

    Gu S, Liu J, Zhao F Z, Zhang Z G, Bi J S, Geng C, Hou M D, Liu G, Liu T Q, Xi K 2015 Nucl. Instrum. Methods B 342 286Google Scholar

    [21]

    张战刚 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang Z G 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

  • 图 1  测试装置示意图

    Fig. 1.  Schematic diagram of the test setup.

    图 2  蒙卡仿真得到的65 nm SRAM硅片表面α粒子分布图

    Fig. 2.  α particle distribution on the silicon surface of the 65 nm SRAM.

    图 3  蒙卡仿真得到的90 nm SRAM硅片表面α粒子分布图

    Fig. 3.  α particle distribution on the silicon surface of the 90 nm SRAM.

    图 4  初始写入图形对SEU截面的影响

    Fig. 4.  Impact of initial data pattern on SEU cross section.

    图 5  65 nm SRAM的反向分析结果 (a)横切面; (b)存储区图像

    Fig. 5.  Reverse analysis results of the 65 nm SRAM: (a) Cross section; (b) memory area image.

    图 6  TRIM仿真结果 (a) α粒子在器件中的传播轨迹; (b)器件横断面视角下的α粒子轨迹(粒子初始入射位置为中心零点处)

    Fig. 6.  TRIM simulation results: (a) The propagation trajectory of alpha particles in the device; (b) the alpha particle trajectory from the cross-sectional view of the device (the initial incident position of the particle is at the zero center).

    图 7  65 nm工艺器件三维仿真模型

    Fig. 7.  3 D simulation model of the 65 nm device.

    图 8  不同入射角度下器件灵敏区中的沉积能量谱

    Fig. 8.  Deposited energy spectra in sensitive regions of devices at different incident angles.

    图 9  α粒子在硅材料中的LET值与能量的关系

    Fig. 9.  Relationship between LET value and energy of α particle in silicon material.

    图 10  不同入射角度下单粒子翻转截面与临界能量的关系

    Fig. 10.  Relationship between single event upset cross section and critical energy at different incident angles.

    图 11  不同入射角度下的单粒子翻转截面

    Fig. 11.  Single event upset cross section at different incident angles.

    图 12  边缘效应示意图(未按实际比例绘图)[20,21]

    Fig. 12.  Schematic diagram of edge effect (not scaled)[20,21].

    表 1  使用的放射源参数

    Table 1.  Parameters of the radioactive source being used.

    α粒子源Am-241
    放射率/粒子·2π–1·min–15.73 × 105
    尺寸圆柱体, Φ18 mm, 1 mm厚
    下载: 导出CSV

    表 2  被测器件参数

    Table 2.  Parameters of the devices under test.

    器件类型型号厂商工艺尺寸/nm测试容量/Mb工作电压/V硅片尺寸
    DDR-II SRAMCY7C1318CYPRESS651.1251.85 mm × 8 mm
    QDR-II SRAMCY7C1412CYPRESS65181.85 mm × 8 mm
    SRAMCY7C1019DCYPRESS9013.32 mm × 2 mm
    下载: 导出CSV

    表 3  SEU截面测试结果

    Table 3.  Test results of SEU cross section.

    器件测试容量/Mb粒子注量率/cm–2·s–1测试时长SEU数量SEU截面/cm2·bit–1
    CY7 C1318(65 nm)1.1251.33 × 1037 min 52 s2042.76 × 10–10
    CY7 C1412(65 nm)181.33 × 1033 min 41 s16132.91 × 10–10
    CY7 C1019 D(90 nm)17.42 × 10216 h1272.83 × 10–12
    下载: 导出CSV

    表 4  α粒子发射率等级及对应的软错误率

    Table 4.  The α particle emissivity level and corresponding soft error rate.

    α粒子发射率等级发射率/cm–2·h–165 nm SRAM软错误率/FIT·Mb–190 nm SRAM软错误率/FIT·Mb–1
    ULA~0.0013.03 × 1022.97
    Low Alpha (LA)~0.013.03 × 10329.7
    Uncontrolled Alpha~206.06 × 1065.94 × 104
    下载: 导出CSV

    表 5  65 nm SRAM在4300 m海拔试验地点及北京海平面使用时的软错误率及α粒子、高能中子和热中子贡献占比

    Table 5.  Soft error rates of the 65 nm SRAM at the experimental site with an altitude of 4300 m and sea level of Beijing city being used. The contribution rates of α particle, high energy neutron and thermal neutron are analyzed, respectively.

    粒子种类4300 m海拔处的软错误率/FIT·Mb–1占比(4300 m海拔)北京海平面处的软错误率/FIT·Mb–1占比(北京海平面)
    全部2356100%429100%
    α粒子30312.86%30370.63%
    高能中子205387.14%12629.37%
    热中子00%00%
    下载: 导出CSV

    表 6  65 nm SRAM的存储单元尺寸和灵敏区参数

    Table 6.  Memory cell size and SV parameters of the 65 nm SRAM device.

    器件存储单元尺寸灵敏区尺寸灵敏区厚度/μm重离子LET阈值/ MeV·cm2·mg-1临界能量/keV
    65 nm SRAM1 μm × 0.5 μm0.2 μm × 0.19 μm0.450.22[19]22.5[19]
    下载: 导出CSV
    Baidu
  • [1]

    May T C, Woods M H 1979 IEEE Trans. Electron. Dev. ED-26 2

    [2]

    Bhuva B 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1−5, 2018 p34.4.1

    [3]

    Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar

    [4]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [5]

    JESD89 A Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006 [标准]

    [6]

    Auden E C, Quinn H M, Wender S A, O’ Donnell J M, Lisowski P W, George J S, Xu N, Black D A, Black J D 2020 IEEE Trans. Nucl. Sci. 67 29Google Scholar

    [7]

    Weulersse C, Houssany S, Guibbaud N, Segura-Ruiz J, Beaucour J, Miller F, Mazurek M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar

    [8]

    Autran J L, Munteanu D, Sauze S, Gasiot G, Roche P 2014 IEEE Radiation Effects Data Workshop (REDW) Paris, France, July 14−18, 2014 p1

    [9]

    Lee S, Uemura T, Monga U, Choi J H, Kim G, Pae S 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, April 2−6, 2017 pSE-1.1

    [10]

    Uemura T, Lee S, Min D, Moon I, Lim J, Lee S, Sagong H C, Pae S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 pSE.1-1

    [11]

    Fang Y, Oates A S 2018 IEEE International Reliability Physics Symposium (IRPS) Burlingame, CA, USA, March 11−15, 2018 p4C.2-1

    [12]

    Zhang Z, Lei Z, Tong T, Li X, Xi K, Peng C, Shi Q, He Y, Huang Y, En Y 2019 IEEE Trans. Nucl. Sci. 66 1368Google Scholar

    [13]

    The Stopping and Range of Ions in Matter, Ziegler J F http://www.srim.org/ [2019-7-3]

    [14]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [15]

    Adams J H, Barghouty A F, Mendenhall M H, Reed R A, Sierawski B D, Warren K M, Watts J W, Weller R A 2012 IEEE Trans. Nucl. Sci. 59 3141Google Scholar

    [16]

    Tylka A J, Adams J H, Boberg P R, Brownstein B, Dietrich W F, Flueckiger E O, Petersen E L, Shea M A, Smart D F, Smith E C 1997 IEEE Trans. Nucl. Sci. 44 2150Google Scholar

    [17]

    Weller R A, Mendenhall M H, Reed R A, Schrimpf R D, Warren K M, Sierawski B D, Massengill L W 2010 IEEE Trans. Nucl. Sci. 57 1726Google Scholar

    [18]

    Mendenhall M H, Weller R A 2012 Nucl. Instrum. Methods A 667 38Google Scholar

    [19]

    Zhang Z, Lei Z, En Y, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19−23, 2016 PH14

    [20]

    Gu S, Liu J, Zhao F Z, Zhang Z G, Bi J S, Geng C, Hou M D, Liu G, Liu T Q, Xi K 2015 Nucl. Instrum. Methods B 342 286Google Scholar

    [21]

    张战刚 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang Z G 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

  • [1] 张幸, 刘玉林, 李刚, 燕少安, 肖永光, 唐明华. 基于55 nm DICE结构的单粒子翻转效应模拟研究.  , 2024, 73(6): 066103. doi: 10.7498/aps.73.20231564
    [2] 江新帅, 罗尹虹, 赵雯, 张凤祁, 王坦. 阱接触对28 nm SRAM单粒子多位翻转的影响.  , 2023, 72(3): 036101. doi: 10.7498/aps.72.20221742
    [3] 吴相凤, 王丰, 林展宏, 陈罗玉, 于召客, 吴凯邦, 王正汹. CFETR参数下$\boldsymbol \alpha$粒子慢化过程的数值模拟.  , 2023, 72(21): 215209. doi: 10.7498/aps.72.20230700
    [4] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验.  , 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [5] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火.  , 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [6] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究.  , 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [7] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟.  , 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [8] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比.  , 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [9] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性.  , 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [10] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究.  , 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [11] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究.  , 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [12] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性.  , 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [13] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究.  , 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [14] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法.  , 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究.  , 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [16] 杨天丽, 杨朝文, 迮仁德, 熊宗华, 郝樊华. 高能α粒子轰击Yb箔制备178Hfm2核素的初步研究.  , 2010, 59(12): 8465-8470. doi: 10.7498/aps.59.8465
    [17] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟.  , 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [18] 施研博, 应阳君, 李金鸿. α粒子的慢化过程对D-T等离子体聚变燃烧的影响.  , 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [19] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟.  , 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [20] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究.  , 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
计量
  • 文章访问数:  8078
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-26
  • 修回日期:  2020-04-23
  • 上网日期:  2020-06-30
  • 刊出日期:  2020-07-05

/

返回文章
返回
Baidu
map