-
In the shallow water waveguide, matched field tracking methods use the continuity of the peak position of the moving source and the disorder of pseudo-peaks on the sequential ambiguity surfaces to track the underwater source trajectory. However, owing to the dual influence of the space-time fluctuating shallow water waveguide environment and the complex sources motion scene, the existing matching field tracking methods are prone to track interruption, switches and false track phenomena, leading to discontinuous tracking results. Using the consistency between the peak position distance likelihood and the peak amplitude likelihood of sequential ambiguity surfaces, a continuous matched field tracking method is proposed based on the trajectory Poisson multi-Bernoulli mixture filter in this paper. The proposed method is applied to SWellEx-96 experimental data, and the tracking performance is measured by the linear programming metric. The results show that compared with the existing matching field tracking method and multi-target tracking method via random finite set, the proposed method achieves continuous tracking and accurate quantity estimation of moving sources trajectory. Among them, the prediction step and updating step in the trajectory space can avoid the phenomenon of trajectory interruption and switches in unvoiced periods.
-
Keywords:
- shallow water waveguide /
- matched field tracking /
- a scene of intermittent vocalization /
- continuous trajectory
[1] Bucker H 1976 J. Acoust. Soc. Am. 59 368Google Scholar
[2] Bucker H 1994 J. Acoust. Soc. Am. 96 3809Google Scholar
[3] Fialkowski L T, Perkins J S, Collins M D 2001 J. Acoust. Soc. Am. 110 739Google Scholar
[4] Maranda B H, Fawcett J A 1991 IEEE J. Ocean. Eng. 16 189Google Scholar
[5] Fawcett J A, Maranda B H 1993 J. Acoust. Soc. Am. 94 1363Google Scholar
[6] Zala C A, Ozard J M, Wilmut M J 1998 J. Acoust. Soc. Am. 103 374Google Scholar
[7] Tantum S L, Nolte L W 2002 J. Acoust. Soc. Am. 112 119Google Scholar
[8] Mahler R P 2014 Advances in Statistical Multisource-Multitarget Information Fusion (Boston, London: Artech house) p83
[9] Yardim C, Michalopoulou Z, Gerstoft P 2011 IEEE J. Ocean. Eng. 36 71Google Scholar
[10] Vo B N, Ma W K 2006 IEEE Trans. Signal. Proces. 54 4091Google Scholar
[11] Gruden P, White P R 2016 J. Acoust. Soc. Am. 140 1981Google Scholar
[12] Gruden P, White P R 2016 J. Acoust. Soc. Am. 148 3014Google Scholar
[13] Gruden P, Nosal E M 2021 J. Acoust. Soc. Am. 150 3399Google Scholar
[14] Kupilik M J, Petersen T 2014 J. Acoust. Soc. Am. 136 1736Google Scholar
[15] Georgescu R, Willett P 2012 IEEE J. Ocean. Eng. 37 220Google Scholar
[16] García-Fernández Á F, Williams J L 2018 IEEE Trans. Signal. Proces. 54 1883Google Scholar
[17] García-Fernández Á F, Svensson L 2020 IEEE Trans. Signal. Proces. 68 4933Google Scholar
[18] Vo B T, Vo B N 2013 IEEE Trans. Signal. Proces. 61 3460Google Scholar
[19] Tracey B H 2005 J. Acoust. Soc. Am. 118 1372Google Scholar
[20] Lerro D, Bar-Shalom Y 1993 IEEE Trans. Aerosp. Electron. Syst. 29 404Google Scholar
[21] Bendat J S, Piersol A G 2010 Random Data: Analysis and Measurement Procedures (4th Ed.) (Hoboken, NJ: Wiley) p604
[22] Murray J, Ensberg D The SWellEx-96 experiment http://swellex96.ucsd.edu/ (Last viewed July 2021
[23] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre
[24] Gemba K L, Nannuru S 2017 J. Acoust. Soc. Am. 141 3411Google Scholar
[25] Booth N O, Baxley P A 1996 IEEE J. Ocean. Eng. 21 402Google Scholar
[26] García-Fernández Á F, Rahmathullah A S 2020 IEEE Trans. Signal. Proces. 68 3917Google Scholar
-
图 6 TPMBM-A-MFT的跟踪过程 (a)第6.29 min; (b)第6.77 min; (c)第11.13 min; (d)第11.61 min; (e)第21.77 min; (f)第22.26 min; (g)第42.10 min; (h)第54.19 min; (i)第60.00 min
Figure 6. Tracking process of TPMBM-A-MFT method: (a) 6.29 minutes; (b) 6.77 minutes; (c) 11.13 minutes; (d) 11.61 minutes; (e) 21.77 minutes; (f) 22.26 minutes; (g) 42.10 minutes; (h) 54.19 minutes; (i) 60.00 minutes.
表 1 TPMBM-A-MFT算法流程
Table 1. Steps of TPMBM-A-MFT algorithm.
步骤1 建立匹配场轨迹状态空间模型
变换模糊度函数: (26)式;
给出状态方程和观测方程: (27)式和(28)式;步骤2 根据(27)式对$ p({{\bf X}_k}) $参数集预测: 2.2.1节; 步骤3 根据(28)式对$ p({{\bf X}_k}) $参数集更新: 2.2.2节; 步骤4 结合峰值位置与幅度实现数据关联: (36)式; 步骤5 估计轨迹状态和数量: (25)式. 注: 初始时间步中$ {\bf{X} }_{k = 1}^{\rm{d}} = \varnothing $且泊松强度$ \lambda _{k = 1}^{\rm{u}} = \lambda _{k = 1}^{\rm{b}} $. 表 2 匹配场跟踪过程的滤波参数设置
Table 2. Filter parameters setup for matched field tracking process.
${q_r}$ ${q_d}$ ${\sigma _r}$ ${\sigma _d}$ $T$ ${w^{\text{b}}}$ ${P^{\text{S}}}$ ${P^{\text{D}}}$ $\varGamma $ $6 \times {10^{ - 3}}$ $6 \times {10^{ - 3}}$ $0.05$ $2$ $1$ $5 \times {10^{ - 3}}$ $0.99$ $\{ 0.2, 0.5\} $ $0.1$ -
[1] Bucker H 1976 J. Acoust. Soc. Am. 59 368Google Scholar
[2] Bucker H 1994 J. Acoust. Soc. Am. 96 3809Google Scholar
[3] Fialkowski L T, Perkins J S, Collins M D 2001 J. Acoust. Soc. Am. 110 739Google Scholar
[4] Maranda B H, Fawcett J A 1991 IEEE J. Ocean. Eng. 16 189Google Scholar
[5] Fawcett J A, Maranda B H 1993 J. Acoust. Soc. Am. 94 1363Google Scholar
[6] Zala C A, Ozard J M, Wilmut M J 1998 J. Acoust. Soc. Am. 103 374Google Scholar
[7] Tantum S L, Nolte L W 2002 J. Acoust. Soc. Am. 112 119Google Scholar
[8] Mahler R P 2014 Advances in Statistical Multisource-Multitarget Information Fusion (Boston, London: Artech house) p83
[9] Yardim C, Michalopoulou Z, Gerstoft P 2011 IEEE J. Ocean. Eng. 36 71Google Scholar
[10] Vo B N, Ma W K 2006 IEEE Trans. Signal. Proces. 54 4091Google Scholar
[11] Gruden P, White P R 2016 J. Acoust. Soc. Am. 140 1981Google Scholar
[12] Gruden P, White P R 2016 J. Acoust. Soc. Am. 148 3014Google Scholar
[13] Gruden P, Nosal E M 2021 J. Acoust. Soc. Am. 150 3399Google Scholar
[14] Kupilik M J, Petersen T 2014 J. Acoust. Soc. Am. 136 1736Google Scholar
[15] Georgescu R, Willett P 2012 IEEE J. Ocean. Eng. 37 220Google Scholar
[16] García-Fernández Á F, Williams J L 2018 IEEE Trans. Signal. Proces. 54 1883Google Scholar
[17] García-Fernández Á F, Svensson L 2020 IEEE Trans. Signal. Proces. 68 4933Google Scholar
[18] Vo B T, Vo B N 2013 IEEE Trans. Signal. Proces. 61 3460Google Scholar
[19] Tracey B H 2005 J. Acoust. Soc. Am. 118 1372Google Scholar
[20] Lerro D, Bar-Shalom Y 1993 IEEE Trans. Aerosp. Electron. Syst. 29 404Google Scholar
[21] Bendat J S, Piersol A G 2010 Random Data: Analysis and Measurement Procedures (4th Ed.) (Hoboken, NJ: Wiley) p604
[22] Murray J, Ensberg D The SWellEx-96 experiment http://swellex96.ucsd.edu/ (Last viewed July 2021
[23] Porter M B 1991 The KRAKEN Normal Mode Program (La Spezia: SACLANT Undersea Research Centre
[24] Gemba K L, Nannuru S 2017 J. Acoust. Soc. Am. 141 3411Google Scholar
[25] Booth N O, Baxley P A 1996 IEEE J. Ocean. Eng. 21 402Google Scholar
[26] García-Fernández Á F, Rahmathullah A S 2020 IEEE Trans. Signal. Proces. 68 3917Google Scholar
Catalog
Metrics
- Abstract views: 3599
- PDF Downloads: 60
- Cited By: 0