Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors

Xi Xiao-Ming Yang Bao-Lai Wang Peng Zhang Han-Wei Wang Xiao-Lin Han Kai Wang Ze-Feng Xu Xiao-Jun Chen Jin-Bao

Citation:

Over 10-kW fiber laser spectral beam combination based on dichromatic mirrors

Xi Xiao-Ming, Yang Bao-Lai, Wang Peng, Zhang Han-Wei, Wang Xiao-Lin, Han Kai, Wang Ze-Feng, Xu Xiao-Jun, Chen Jin-Bao
PDF
HTML
Get Citation
  • Owing to the advantages of good beam quality, high conversion efficiency, convenient thermal management and compact structure, high power fiber lasers have been widely desired in industrial processing. So far, the output power has been strictly limited by the nonlinear effects and transverse mode instability. In order to break through the power limitation, here we experimentally demonstrate a power boosting technology called spectral beam combination based on dichromatic mirrors. Firstly, high power fiber amplifiers with different central wavelengths are established for the spectral combination. Secondly, utilizing a dual-beam combined system and two homemade high power fiber amplifiers, an output power of 10 kW is achieved, with a remarkable combination efficiency of 98.3% and a beam quality of M 2~1.33. Secondly, using a three-beam combined system, an output power of 13.5 kW is obtained with a combination efficiency of 96.8% and beam quality of M 2~1.61. By increasing the number of input beams and their output power as well, we believe that a higher output power can be achieved based on dichromatic mirror spectral beam combination.
      Corresponding author: Wang Xiao-Lin, chinaphotonics@163.com ; Wang Ze-Feng, zefengwang_nudt@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61905282, 62005315).
    [1]

    Nilsson J, Payne D 2011 Science 332 921Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    Zervas M N 2014 Inter. J. Mod. Phys. B 28 1442009Google Scholar

    [4]

    Richardson D, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 63Google Scholar

    [5]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 1321Google Scholar

    [6]

    Smith A V, Smith J J 2011 Opt. Express 19 10180Google Scholar

    [7]

    肖虎, 潘志勇, 陈子伦, 奚小明, 黄良金, 王蒙, 杨欢, 闫志平, 冷进勇, 王小林, 王泽锋, 周朴, 许晓军, 陈金宝 2022 中国激光 49 1616002

    Xiao H, Pan Z Y, Chen Z L, Xi X M, Huang L J, Wang M, Yang H, Yan Z P, Leng J Y, Wang X L, Wang Z F, Zhou P, Xu X J, Chen J B 2022 Chin. J. Lasers 49 1616002

    [8]

    林傲祥, 肖起榕, 倪力, 李丹, 彭昆, 齐天澄, 俞娟, 田佳丁, 冷晓晓, 吴与伦, 王小龙, 王乐乐, 戴晓军, 向恒, 闫平, 巩马理 2021 中国激光 48 0916003

    Lin A X, Xiao Q R, Ni L, Li D, Peng K, Qi T C, Yu J, Tian J D, Leng X X, Wu Y L, Wang X L, Wang L L, Dai X J, Xiang H, Yan P, Gong M L 2021 Chin. J. Lasers 48 0916003

    [9]

    李峰云, 黎玥, 宋华青, 衣永青, 楚秋慧, 张昊宇, 黄珊, 郭超, 舒强, 颜冬林, 陶汝茂, 黄智蒙, 庞璐, 沈一泽, 史仪, 高聪, 刘念, 贺红磊, 李雨薇, 刘玙, 吴文杰, 王旗华, 温静, 汪卓, 林宏奂, 王建军, 景峰 2021 中国激光 48 2116002

    Li F Y, Li Y, Song H Q, Yi Y Q, Chu Q H, Zhang H Y, Huang S, Guo C, Shu Q, Yan D L, Tao R M, Huang Z M, Pang L, Shen Y Z, Shi Y, Gao C, Liu N, He H L, Li Y W, Liu Y, Wu W J, Wang Q H, Wen J, Wang Z, Lin H H, Wang J J, Jing F 2021 Chin. J. Lasers 48 2116002

    [10]

    Wang Y, Chen G, Li J 2018 High Power Laser Sci. Eng. 6 40Google Scholar

    [11]

    郑也, 杨依枫, 赵翔, 公维超, 柏刚, 张璟璞, 刘恺, 陈晓龙, 赵纯, 漆云凤, 晋云霞, 何兵, 周军 2017 中国激光 44 0201002Google Scholar

    Zheng Y, Yang Y F, Zhao X, Gong W C, Bai G, Zhang J P, Liu K, Chen X L, Zhao C, Qi Y F, Jin Y X, He B, Zhou J 2017 Chin. J. Lasers 44 0201002Google Scholar

    [12]

    何旭宝, 奚小明, 张汉伟, 王小林, 许晓军 2021 激光与光电子学进展 58 0900004Google Scholar

    He X B, Xi X M, Zhang H W, Wang X L, Xu X J 2021 Laser Optoelectron. Prog. 58 0900004Google Scholar

    [13]

    穆让修, 张佳, 龙井宇, 李刚, 卜英华, 韩耀锋, 寿少峻 2022 应用光学 43 792Google Scholar

    Mu R X, Zhang J, Long J Y, Li G, Bu Y H, Han Y F, Shou S J 2022 J. Appl. Opt. 43 792Google Scholar

    [14]

    许晓军, 韩凯, 刘泽金, 王小林, 马阎星, 张烜喆, 宁禹, 周朴 2019 CN 105762632B

    Xu X J, Han K, Liu Z J, Wang X L, Ma Y X, Zhang X Z, Ning Y, Zhou P 2019 CN Patent 105762632B

    [15]

    Regelskis K, Hou K, Raciukaitis G, Galvanauskas A 2008 Conference on Lasers and Electro-Optic San Jose, USA, May 4–9, 2008 p1

    [16]

    Schmidt O, Wirth C, Nodop D, Limpert J, Schreiber T, Peschel T, Eberhardt R, Tünnermann A 2009 Opt. Express 17 22974Google Scholar

    [17]

    Chen F, Ma J, Wei C, Zhu R, Zhou W, Yuan Q, Pan S, Zhang J, Yize W, Dou J 2017 Opt. Express 25 32783Google Scholar

    [18]

    He X B, Xiao H, Ma P F, Zhang H W, Wang X L, Xu X J 2021 Infrared Laser Eng. 50 20200385 [何旭宝, 肖虎, 马鹏飞, 张汉伟, 王小林, 许晓军 2021 红外与激光工程 50 20200385Google Scholar

    He X B, Xiao H, Ma P F, Zhang H W, Wang X L, Xu X J 2021 Infrared Laser Eng. 50 20200385Google Scholar

    [19]

    Yang B L, Wang P, Zhang H W, Xi X M, Wang X L, Shi C, Xu X J, Chen J B 2022 Chin. J. Lasers 49 0816001 [杨保来, 王鹏, 张汉伟, 奚小明, 王小林, 史尘, 许晓军, 陈金宝 2022 中国激光 49 0816001

    Yang B L, Wang P, Zhang H W, Xi X M, Wang X L, Shi C, Xu X J, Chen J B 2022 Chin. J. Lasers 49 0816001

    [20]

    Yang B L, Wang P, Zhang H W, Xi X M, Shi C, Wang X L, Xu X J 2021 Opt. Express 29 26366Google Scholar

  • 图 1  光纤激光放大器结构示意图

    Figure 1.  Schematic of the fiber amplifiers.

    图 2  两路合束实验中激光器在最高输出功率时的光谱

    Figure 2.  Optical spectra of the fiber amplifiers at the maximum output power for the dual-beam combination experiment.

    图 8  (a)三路激光合束装置示意图; (b)三路激光光谱以及双色镜的透射曲线

    Figure 8.  (a) Schematic of the three-beam combining setup; (b) beam spectra and transmission curve of the dichromatic mirrors.

    图 3  1050 nm光纤激光放大器结构示意图

    Figure 3.  Schematic of the 1050 nm fiber amplifier.

    图 4  三路合束实验中单路激光器最高功率时的光谱

    Figure 4.  Optical spectra of the fiber amplifiers for the three-beam combination experiment.

    图 5  (a)两路激光合束装置示意图和(b)双色镜透射曲线(CL, 凹透镜; PM, 功率计)

    Figure 5.  (a) Schematic diagram of the dual-beam combining setup; (b) transmission curve of the dichromatic mirror (CL, concave lens; PM, power meter).

    图 6  两路合成实验结果 (a)功率与效率; (b)合成输出光谱和光斑

    Figure 6.  Results of the dual-beam combining experiment: (a) Optical power and combining efficiency; (b) output spectrum and beam profile.

    图 7  两路合束系统中单路(a), (b)和合束后(c)激光的光束质量测量结果

    Figure 7.  Measured beam quality of the (a), (b) fiber amplifiers and the (c) dual-beam combined laser.

    图 9  单路激光光束质量测量结果 (a) 1050 nm; (b) 1069 nm; (c) 1085 nm

    Figure 9.  Measured beam quality of the pre-combining lasers: (a) 1050 nm; (b) 1069 nm; (c) 1085 nm.

    图 10  三路合束激光的(a)光谱和(b)光束质量

    Figure 10.  Optical spectrum (a) and beam quality (b) of the three-beam combined laser.

    Baidu
  • [1]

    Nilsson J, Payne D 2011 Science 332 921Google Scholar

    [2]

    Shi W, Fang Q, Zhu X, Norwood R A, Peyghambarian N 2014 Appl. Opt. 53 6554Google Scholar

    [3]

    Zervas M N 2014 Inter. J. Mod. Phys. B 28 1442009Google Scholar

    [4]

    Richardson D, Nilsson J, Clarkson W A 2010 J. Opt. Soc. Am. B 27 63Google Scholar

    [5]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 1321Google Scholar

    [6]

    Smith A V, Smith J J 2011 Opt. Express 19 10180Google Scholar

    [7]

    肖虎, 潘志勇, 陈子伦, 奚小明, 黄良金, 王蒙, 杨欢, 闫志平, 冷进勇, 王小林, 王泽锋, 周朴, 许晓军, 陈金宝 2022 中国激光 49 1616002

    Xiao H, Pan Z Y, Chen Z L, Xi X M, Huang L J, Wang M, Yang H, Yan Z P, Leng J Y, Wang X L, Wang Z F, Zhou P, Xu X J, Chen J B 2022 Chin. J. Lasers 49 1616002

    [8]

    林傲祥, 肖起榕, 倪力, 李丹, 彭昆, 齐天澄, 俞娟, 田佳丁, 冷晓晓, 吴与伦, 王小龙, 王乐乐, 戴晓军, 向恒, 闫平, 巩马理 2021 中国激光 48 0916003

    Lin A X, Xiao Q R, Ni L, Li D, Peng K, Qi T C, Yu J, Tian J D, Leng X X, Wu Y L, Wang X L, Wang L L, Dai X J, Xiang H, Yan P, Gong M L 2021 Chin. J. Lasers 48 0916003

    [9]

    李峰云, 黎玥, 宋华青, 衣永青, 楚秋慧, 张昊宇, 黄珊, 郭超, 舒强, 颜冬林, 陶汝茂, 黄智蒙, 庞璐, 沈一泽, 史仪, 高聪, 刘念, 贺红磊, 李雨薇, 刘玙, 吴文杰, 王旗华, 温静, 汪卓, 林宏奂, 王建军, 景峰 2021 中国激光 48 2116002

    Li F Y, Li Y, Song H Q, Yi Y Q, Chu Q H, Zhang H Y, Huang S, Guo C, Shu Q, Yan D L, Tao R M, Huang Z M, Pang L, Shen Y Z, Shi Y, Gao C, Liu N, He H L, Li Y W, Liu Y, Wu W J, Wang Q H, Wen J, Wang Z, Lin H H, Wang J J, Jing F 2021 Chin. J. Lasers 48 2116002

    [10]

    Wang Y, Chen G, Li J 2018 High Power Laser Sci. Eng. 6 40Google Scholar

    [11]

    郑也, 杨依枫, 赵翔, 公维超, 柏刚, 张璟璞, 刘恺, 陈晓龙, 赵纯, 漆云凤, 晋云霞, 何兵, 周军 2017 中国激光 44 0201002Google Scholar

    Zheng Y, Yang Y F, Zhao X, Gong W C, Bai G, Zhang J P, Liu K, Chen X L, Zhao C, Qi Y F, Jin Y X, He B, Zhou J 2017 Chin. J. Lasers 44 0201002Google Scholar

    [12]

    何旭宝, 奚小明, 张汉伟, 王小林, 许晓军 2021 激光与光电子学进展 58 0900004Google Scholar

    He X B, Xi X M, Zhang H W, Wang X L, Xu X J 2021 Laser Optoelectron. Prog. 58 0900004Google Scholar

    [13]

    穆让修, 张佳, 龙井宇, 李刚, 卜英华, 韩耀锋, 寿少峻 2022 应用光学 43 792Google Scholar

    Mu R X, Zhang J, Long J Y, Li G, Bu Y H, Han Y F, Shou S J 2022 J. Appl. Opt. 43 792Google Scholar

    [14]

    许晓军, 韩凯, 刘泽金, 王小林, 马阎星, 张烜喆, 宁禹, 周朴 2019 CN 105762632B

    Xu X J, Han K, Liu Z J, Wang X L, Ma Y X, Zhang X Z, Ning Y, Zhou P 2019 CN Patent 105762632B

    [15]

    Regelskis K, Hou K, Raciukaitis G, Galvanauskas A 2008 Conference on Lasers and Electro-Optic San Jose, USA, May 4–9, 2008 p1

    [16]

    Schmidt O, Wirth C, Nodop D, Limpert J, Schreiber T, Peschel T, Eberhardt R, Tünnermann A 2009 Opt. Express 17 22974Google Scholar

    [17]

    Chen F, Ma J, Wei C, Zhu R, Zhou W, Yuan Q, Pan S, Zhang J, Yize W, Dou J 2017 Opt. Express 25 32783Google Scholar

    [18]

    He X B, Xiao H, Ma P F, Zhang H W, Wang X L, Xu X J 2021 Infrared Laser Eng. 50 20200385 [何旭宝, 肖虎, 马鹏飞, 张汉伟, 王小林, 许晓军 2021 红外与激光工程 50 20200385Google Scholar

    He X B, Xiao H, Ma P F, Zhang H W, Wang X L, Xu X J 2021 Infrared Laser Eng. 50 20200385Google Scholar

    [19]

    Yang B L, Wang P, Zhang H W, Xi X M, Wang X L, Shi C, Xu X J, Chen J B 2022 Chin. J. Lasers 49 0816001 [杨保来, 王鹏, 张汉伟, 奚小明, 王小林, 史尘, 许晓军, 陈金宝 2022 中国激光 49 0816001

    Yang B L, Wang P, Zhang H W, Xi X M, Wang X L, Shi C, Xu X J, Chen J B 2022 Chin. J. Lasers 49 0816001

    [20]

    Yang B L, Wang P, Zhang H W, Xi X M, Shi C, Wang X L, Xu X J 2021 Opt. Express 29 26366Google Scholar

  • [1] Duan Lei, Xu Run-Qin, Song Yun-Bo, Tan Shu-Dan, Liang Cheng-Bin, Xu Fan-Jiang, Liu Zhao-Hui. Theoretical model and numerical study of effect of target reflected light on high-power fiber laser. Acta Physica Sinica, 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [2] Xia Qing-Gan, Xiao Wen-Bo, Li Jun-Hua, Jin Xin, Ye Guo-Ming, Wu Hua-Ming, Ma Guo-Hong. Optimization of thermal performance of cladding power stripper in fiber laser. Acta Physica Sinica, 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [3] Zhang Ji-Ye, Zhang Jian-Wei, Zeng Yu-Gang, Zhang Jun, Ning Yong-Qiang, Zhang Xing, Qin Li, Liu Yun, Wang Li-Jun. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication. Acta Physica Sinica, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [4] Sun Rui, Chen Chen, Ling Wei-Jun, Zhang Ya-Ni, Kang Cui-Ping, Xu Qiang. Watt-level passively Q-switched mode-locked Tm: LuAG laser with graphene oxide saturable absorber. Acta Physica Sinica, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [5] Peng Wan-Jing, Liu Peng. Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter. Acta Physica Sinica, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [6] Cheng Li-Jun, Yang Su-Hui, Zhao Chang-Ming, Zhang Hai-Yang. High-power wideband radio-frequency intensity modulated continuous wave laser. Acta Physica Sinica, 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [7] Wang Ze-Hui, Xiao Qi-Rong, Wang Xue-Jiao, Yi Yong-Qing, Pang Lu, Pan Rong, Huang Yu-Sheng, Tian Jia-Ding, Li Dan, Yan Ping, Gong Ma-Li. 3000 W tandem pumped all-fiber laser based on domestic fiber. Acta Physica Sinica, 2018, 67(2): 024205. doi: 10.7498/aps.67.20171676
    [8] Zhou Zi-Chao, Wang Xiao-Lin, Tao Ru-Mao, Zhang Han-Wei, Su Rong-Tao, Zhou Pu, Xu Xiao-Jun. Theoretical study of the temperature distribution in high power gain fiber of gradient doping. Acta Physica Sinica, 2016, 65(10): 104204. doi: 10.7498/aps.65.104204
    [9] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [10] Zhang Da-Peng, Hu Ming-Lie, Xie Chen, Chai Lu, Wang Qing-Yue. A high power photonic crystal fiber laser oscillator based on nonlinear polarization rotation mode-locking. Acta Physica Sinica, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [11] Dong Xiao-Lin, Xiao Hu, Ma Yan-Xing, Zhou Pu, Guo Shao-Feng. High power polarization-maintaining master oscillator power amplifier fiber laser in all-fiber format. Acta Physica Sinica, 2012, 61(6): 064207. doi: 10.7498/aps.61.064207
    [12] Zhu Ya-Dong, Xiao Hu, Wang Xiao-Lin, Ma Yan-Xing, Zhou Pu. Coherent beam combination of two high power double clad fiber lasers by using an all-fiber Michelson cavity. Acta Physica Sinica, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [13] Hao Yong-Qin, Feng Yuan, Wang Fei, Yan Chang-Ling, Zhao Ying-Jie, Wang Xiao-Hua, Wang Yu-Xia, Jiang Hui-Lin, Gao Xin, Bo Bao-Xue. 808nm vertical-cavity surface-emitting laser with large aperture. Acta Physica Sinica, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [14] Yan Feng-Ping, Mao Xiang-Qiao, Wang Lin, Fu Yong-Jun, Wei Huai, Zheng Kai, Gong Tao-Rong, Liu Peng, Tao Pei-Lin, Jian Shui-Sheng. High stability mono-wavelength output optical fiber laser based on polarization-maintaining erbium-doped fiber. Acta Physica Sinica, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [15] Wang Jing, Zheng Kai, Li Jian, Liu Li-Song, Chen Gen-Xiang, Jian Shui-Sheng. Research on tunable erbium-doped ring fiber laser based on a high-birefringence Sagnac loop: theory and experiment. Acta Physica Sinica, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [16] Xu Ou, Lu Shao-Hua, Jian Shui-Sheng. Theoretical investigation on the characteristics of transmission spectra of the two-cavity Fabry-Perot structure based on fiber gratings for single-frequency fiber laser. Acta Physica Sinica, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [17] Wang Jian-Ming, Duan Kai-Liang, Wang Yi-Shan. Experimental study of coherent beam combining of two fiber lasers. Acta Physica Sinica, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [18] Zhao Zhen-Yu, Duan Kai-Liang, Wang Jian-Ming, Zhao Wei, Wang Yi-Shan. Experimental study of characteristics of high power photonic crystal fiber amplifier. Acta Physica Sinica, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [19] Liu Yan-Ge, Zhang Chun-Shu, Sun Ting-Ting, Lu Yun-Fei, Wang Zhi, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Clad-pumped Er3+/Yb3+-codoped short pulse fiber laser with high average power output exceeding 2W. Acta Physica Sinica, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] Li Hui-Qing, Zhang Jie, Cui Da-Fu, Xu Zu-Yan, Ning Yong-Qiang, Yan Chang-Ling, Qin Li, Liu Yun, Wang Li-Jun, Cao Jian-Lin. Optimal designs for high-power vertical cavity surface emitting lasers. Acta Physica Sinica, 2004, 53(9): 2986-2990. doi: 10.7498/aps.53.2986
Metrics
  • Abstract views:  2830
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  23 April 2023
  • Accepted Date:  19 June 2023
  • Available Online:  18 July 2023
  • Published Online:  20 September 2023

/

返回文章
返回
Baidu
map