Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-field electromagnetic scattering of Bessel vortex beam by metal target

Chen Xin-Miao Li Hai-Ying Wu Tao Meng Xiang-Shuai Li Feng-Xia

Citation:

Near-field electromagnetic scattering of Bessel vortex beam by metal target

Chen Xin-Miao, Li Hai-Ying, Wu Tao, Meng Xiang-Shuai, Li Feng-Xia
PDF
HTML
Get Citation
  • Bessel vortex beam, as a typical vortex beam, has the characteristics of carrying orbital angular momentum (OAM), no diffraction, and self-reconstruction, which makes it more competitive than plane wave in the field of future vortex beam target detection and imaging. In order to study the near-field electromagnetic scattering of a vortex beam by a metal target, the expression of the near-scattering field of Bessel vortex beam incident on any metal target is obtained by using the physical optics method, triangular surface element modeling, and the plane wave angular spectrum expansion method of vector Bessel vortex beam. The correctness of the proposed method is verified by comparing with the simulation results of FEKO software. The amplitude distribution and phase distribution of electric field, the OAM spectrum distribution and radar cross section (RCS) of the near-scattering field of the Bessel vortex beam incident on the simple target and the combined target are calculated. The effects of beam parameters, receiving distance, target shape and the positions of beam transmitting and receiving surfaces on near-field scattering results are numerically calculated. In addition, the distributions of near-field OAM spectra under different conditions and the near-field RCS distributions of different targets are given. The numerical results show that the near-field results of Bessel vortex beam incident on metal targets are related to the beam parameters, and conform to the law of Bessel beam changing with parameters. The near-field electric amplitude distribution is affected by the distance between the receiving surface and the target, but the phase distribution is hardly affected. The near-field scattering results reflect the changes of target shape. Under normal incidence, when the target is regular and symmetrical, the amplitude distribution and phase distribution are relatively regular, and the main mode is dominant. When the beam is obliquely incident on or does not fully illuminate the target, the amplitude distribution and phase distribution change, which will lead the derived mode to increase. In particular, when the target and the receiving surface both deviate from the incident beam, the OAM disturbance is the most severe. In the near-field RCS distribution, the RCS distributions of different targets are obviously different, and the results of E plane and H plane are also different. It can be seen from the numerical calculation results that the near-field scattering of Bessel vortex beam by a metal target contains a variety of information. The application of vortex electromagnetic wave will help improve the information acquisition of electromagnetic wave and target detection capability. The results in this work can provide a reference for target imaging and vortex radar detection.
      Corresponding author: Li Hai-Ying, lihy@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62171355, 62101426, 62201415), the Military Commission Science and Technology Commission Foundation for Basic Strengthening Plan (Grant No. 2021-JCJQ-JJ-1009), the 111 Project (Grant No. B17035) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JM-135).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mawet D, Riaud P, Absil O, Surdej J 2005 Astrophys. J. 633 1191Google Scholar

    [3]

    Swartzlander G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [4]

    Arlt J, Dholakia K, Allen L, Padgett M J 1998 J. Modern Opt. 45 1231

    [5]

    Vaziri A, Weihs G, Zeilinger A 2002 J. Optics B 4 S47Google Scholar

    [6]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [7]

    Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [8]

    Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antenn. Wirel. Pr. 14 711Google Scholar

    [9]

    Tang B, Guo K Y, Wang J P, Sheng X Q 2017 IEEE Antenn. Wirel. Pr. 16 2975Google Scholar

    [10]

    Zhang C, Chen D 2017 IEEE Antenn. Wirel. Pr. 16 2316Google Scholar

    [11]

    Bu X X, Zhang Z, Chen L Y, Liang X D, Tang H B, Wang X M 2018 IEEE Antenn. Wirel. Pr. 17 764Google Scholar

    [12]

    Chen H T, Zhang Z Q, Yu J 2020 Appl. Comput. Electrom. 35 129Google Scholar

    [13]

    Chen Z, Zong X, Zhang Z, Que X, Nie Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 p1

    [14]

    蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 70 238401Google Scholar

    Jiang J H, Yu S X, Kou N, Ding Z, Zhang Z P 2021 Acta Phys. Sin. 70 238401Google Scholar

    [15]

    Nayeri P, Elsherbeni A Z, Yang F 2021 Appl. Comput. Electrom. 28 284

    [16]

    Durnin J 1987 J. Opt. Soc. 4 651Google Scholar

    [17]

    MacDonald R P, Boothroyd S A, Okamoto T, Chrostowski J, Syrett B A 1996 Opt. Commun. 122 169Google Scholar

    [18]

    戴玉蓉, 丁德胜 2011 60 124302Google Scholar

    Dai Y R, Ding D S 2011 Acta Phys. Sin. 60 124302Google Scholar

    [19]

    Velchev I, Ubachs W 2001 Opt. Lett. 26 530Google Scholar

    [20]

    Wu Z, Wu J J, Li H Y, Qu T, Meng X S, Xu Q, Wu Z S, Bai J, Yang L, Gong L, Yun Y 2022 IEEE Antenn. Wirel. Pr. 21 1288Google Scholar

    [21]

    Shao G H, Yan S C, Luo W, Lu G W, Lu Y Q 2017 Sci. Rep. 7 1062Google Scholar

  • 图 1  贝塞尔涡旋波束入射目标的散射几何模型

    Figure 1.  Geometric model for scattering of the target illuminated by the Bessel vortex beam.

    图 2  贝塞尔涡旋波束示意图 (a)—(d) x, y, z方向和总场的电场幅值分布; (e)—(h) x, y, z方向和总场的电场相位分布

    Figure 2.  Schematic for Bessel vortex beam: (a)–(d) The amplitude distribution of Ex, Ey, Ez and Etotal; (e)–(h) the phase distribution of Ex, Ey, Ez and Etotal.

    图 3  目标表面平面子波散射示意图

    Figure 3.  Schematic for plane wavelet scattering on object surface.

    图 4  (a) 平板目标散射示意图; (b) FEKO仿真与本文方法涡旋波退化的幅相分布结果对比

    Figure 4.  (a) Schematic for the scattering of a plate; (b) comparison between FEKO simulation results and the vortex wave degradation results.

    图 5  (a) 球体目标散射示意图; (b) FEKO仿真与本文方法的幅相分布结果对比

    Figure 5.  (a) Schematic for the scattering of a sphere; (b) comparison between FEKO simulation results and the proposed method.

    图 6  10 GHz下不同贝塞尔波束参数下的平板近场幅相分布 (a)—(f) 拓扑荷数$ l = 1, 2, 3 $, 半锥角$\alpha_0 = 10^\circ$; (g)—(l) 半锥角$\alpha_0 = 8^\circ , 10^\circ , 12^\circ$, 拓扑荷数$ l = 2 $; (m) 平板目标散射示意图

    Figure 6.  Amplitude, phase distribution of scattering near fields with the different Bessel beam parameters at 10 GHz: (a)–(f) Topological charges $l = 1,\; 2,\; 3$, half-cone angle $\alpha_0 = 10^\circ$; (g)–(l) half-cone angles $\alpha_0 = 8^\circ , 10^\circ , 12^\circ$, topological charge $ l = 2 $; (m) schematic for the scattering of a flat.

    图 7  不同距离的接收面处的散射近场幅相分布 (a), (d) z = 0.15 m; (b), (e) z = 0.21 m; (c), (f) z = 0.27 m

    Figure 7.  Amplitude and phase distribution of near scattering field at different distances of the receiving surface: (a), (d) z = 0.15 m; (b), (e) z = 0.21 m; (c), (f) z = 0.27 m.

    图 8  球锥、圆柱、棱台和船体目标的散射近场的幅相和OAM模态分布 (a)—(d)幅值分布; (e)—(h) 相位分布; (i) OAM模态分布

    Figure 8.  Amplitude, phase distribution and OAM spectra of the near scattering field of spherical cone, cylinder, truncated pyramid and ship: (a)–(d) Amplitude distributions; (e)–(h) phase distributions; (i) OAM spectra distributions.

    图 9  入射角$ {\theta _0} = 10^\circ $时圆柱、棱台和船体目标的散射近场的幅相和OAM模态分布 (a)—(c)幅值分布; (d)—(f)相位分布; (g) OAM模态分布; (h) 散射几何示意图

    Figure 9.  Amplitude, phase distribution and OAM spectra of near scattering field of cylinder, truncated pyramid and ship targets at incidence angle $ {\theta _0} = 10^\circ $: (a)–(c) Amplitude distribution; (d)–(f) phase distribution; (g) OAM spectra distribution; (h) schematic for target scattering geometry.

    图 10  偏移入射波束的船体目标前向散射近场的幅相和OAM模态分布 (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $\Delta d = 3\lambda$; (g) $ \Delta d = 1\lambda , 2\lambda , 3\lambda $时的OAM分布; (h) 目标散射几何示意图

    Figure 10.  Amplitude, phase distribution and OAM spectra of forward near scattering field of ship target with offset incident beam: (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $ \Delta d = 3\lambda $; (g) OAM spectra at $ \Delta d = 1\lambda , 2\lambda , 3\lambda $; (h) schematic for target scattering geometry.

    图 11  偏移入射场的船体目标后向散射近场的幅相分布和OAM模态分布 (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $\Delta d = $$ 4\lambda$; (g) $\Delta d = 1\lambda , \;2\lambda , \;4\lambda$时的OAM分布; (h) 散射几何示意图

    Figure 11.  Amplitude, phase distribution and OAM spectra of the backward near scattering field of a ship target offset by the incident field: (a), (d) $ \Delta d = 1\lambda $; (b), (e) $ \Delta d = 2\lambda $; (c), (f) $ \Delta d = 4\lambda $; (g) OAM spectra at $\Delta d = 1\lambda ,\; 2\lambda ,\; 4\lambda$; (h) schematic for target scattering geometry.

    图 12  球锥、圆柱、船体目标散射近场的RCS分布 (a)—(c) RCS分布俯视图; (d)—(f) RCS分布主视图

    Figure 12.  RCS distribution of the near scattering field of different targets: (a)–(c) Top view of RCS distribution; (d)—(f) front view of RCS distribution.

    Baidu
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mawet D, Riaud P, Absil O, Surdej J 2005 Astrophys. J. 633 1191Google Scholar

    [3]

    Swartzlander G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [4]

    Arlt J, Dholakia K, Allen L, Padgett M J 1998 J. Modern Opt. 45 1231

    [5]

    Vaziri A, Weihs G, Zeilinger A 2002 J. Optics B 4 S47Google Scholar

    [6]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [7]

    Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F 2011 Appl. Phys. Lett. 99 204102Google Scholar

    [8]

    Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antenn. Wirel. Pr. 14 711Google Scholar

    [9]

    Tang B, Guo K Y, Wang J P, Sheng X Q 2017 IEEE Antenn. Wirel. Pr. 16 2975Google Scholar

    [10]

    Zhang C, Chen D 2017 IEEE Antenn. Wirel. Pr. 16 2316Google Scholar

    [11]

    Bu X X, Zhang Z, Chen L Y, Liang X D, Tang H B, Wang X M 2018 IEEE Antenn. Wirel. Pr. 17 764Google Scholar

    [12]

    Chen H T, Zhang Z Q, Yu J 2020 Appl. Comput. Electrom. 35 129Google Scholar

    [13]

    Chen Z, Zong X, Zhang Z, Que X, Nie Z 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 p1

    [14]

    蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 70 238401Google Scholar

    Jiang J H, Yu S X, Kou N, Ding Z, Zhang Z P 2021 Acta Phys. Sin. 70 238401Google Scholar

    [15]

    Nayeri P, Elsherbeni A Z, Yang F 2021 Appl. Comput. Electrom. 28 284

    [16]

    Durnin J 1987 J. Opt. Soc. 4 651Google Scholar

    [17]

    MacDonald R P, Boothroyd S A, Okamoto T, Chrostowski J, Syrett B A 1996 Opt. Commun. 122 169Google Scholar

    [18]

    戴玉蓉, 丁德胜 2011 60 124302Google Scholar

    Dai Y R, Ding D S 2011 Acta Phys. Sin. 60 124302Google Scholar

    [19]

    Velchev I, Ubachs W 2001 Opt. Lett. 26 530Google Scholar

    [20]

    Wu Z, Wu J J, Li H Y, Qu T, Meng X S, Xu Q, Wu Z S, Bai J, Yang L, Gong L, Yun Y 2022 IEEE Antenn. Wirel. Pr. 21 1288Google Scholar

    [21]

    Shao G H, Yan S C, Luo W, Lu G W, Lu Y Q 2017 Sci. Rep. 7 1062Google Scholar

  • [1] Chen Bo, Liu Jin, Li Jun-Tao, Wang Xue-Hua. Research progress of integrated quantum light sources with orbital angular momentum. Acta Physica Sinica, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] Zhao Li-Juan, Jiang Huan-Qiu, Xu Zhi-Niu. Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum. Acta Physica Sinica, 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [3] Han Jun-Jie, Qian Si-Xian, Zhu Chuan-Ming, Huang Zhi-Xiang, Ren Xin-Gang, Cheng Guang-Shang. Dual-mode orbital angular momentum generated based on dual-polarization coding metasurface. Acta Physica Sinica, 2023, 72(14): 148101. doi: 10.7498/aps.72.20230457
    [4] Xu Meng-Min, Li Xiao-Qing, Tang Rong, Ji Xiao-Ling. Influence of wind-dominated thermal blooming on orbital angular momentum and phase singularity of dual-mode vortex beams. Acta Physica Sinica, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [5] Liu Rui-Xi, Ma Lei. Effects of ocean turbulence on photon orbital angular momentum quantum communication. Acta Physica Sinica, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] Gao Xi, Tang Li-Guang. Wideband and high efficiency orbital angular momentum generator based on bi-layer metasurface. Acta Physica Sinica, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] Feng Jia-Lin, Shi Hong-Yu, Wang Yuan, Zhang An-Xue, Xu Zhuo. Wide-angle method for vortex electromagnetic wave generation using field transformation. Acta Physica Sinica, 2020, 69(13): 135201. doi: 10.7498/aps.69.20200365
    [9] Cui Can, Wang Zhi, Li Qiang, Wu Chong-Qing, Wang Jian. Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber. Acta Physica Sinica, 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [10] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] Fu Shi-Yao, Gao Chun-Qing. Progress of detecting orbital angular momentum states of optical vortices through diffraction gratings. Acta Physica Sinica, 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [12] Fan Rong-Hua, Guo Bang-Hong, Guo Jian-Jun, Zhang Cheng-Xian, Zhang Wen-Jie, Du Ge. Entangled W state of multi degree of freedom system based on orbital angular momentum. Acta Physica Sinica, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [13] Ke Xi-Zheng, Chen Juan, Yang Yi-Ming. Study on orbital angular momentum of Laguerre-Gaussian beam in a slant-path atmospheric turbulence. Acta Physica Sinica, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [14] Li Tie, Chen Juan, Ke Xi-Zheng. Study of orbital angular momentum entangled photons entanglement in atmospheric channel. Acta Physica Sinica, 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [15] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [16] Chen Xiao-Yi, Li Hai-Xia, Song Hong-Sheng, Teng Shu-Yun, Cheng Chuan-Fu, Liu Man. Measurement of orbital angular momentum of Laguerre-Gaussian beam by using phase vortices of interference fields. Acta Physica Sinica, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] Lü Hong, Ke Xi-Zheng. Scattering of a beam with orbital angular momentum by a single sphere. Acta Physica Sinica, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [18] Su Zhi-Kun, Wang Fa-Qiang, Lu Yi-Qun, Jin Rui-Bo, Liang Rui-Sheng, Liu Song-Hao. Study on quantum cryptography using orbital angular momentum states of photons. Acta Physica Sinica, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [19] Gao Ming-Wei, Gao Chun-Qing, Lin Zhi-Feng. Generation of twisted stigmatic beam and transfer of orbital angular momentum during the beam transformation. Acta Physica Sinica, 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
    [20] Gao Ming-Wei, Gao Chun-Qing, He Xiao-Yan, Li Jia-Ze, Wei Guang-Hui. Rotation of particles by using the beamwith orbital angular momentum. Acta Physica Sinica, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
Metrics
  • Abstract views:  3382
  • PDF Downloads:  110
  • Cited By: 0
Publishing process
  • Received Date:  17 November 2022
  • Accepted Date:  17 March 2023
  • Available Online:  23 March 2023
  • Published Online:  20 May 2023

/

返回文章
返回
Baidu
map