Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Self-testing criteria for preparing-measuring qubit system

Wang Yu-Kun Li Ze-Yang Xu Kang Wang Zi-Zheng

Citation:

Self-testing criteria for preparing-measuring qubit system

Wang Yu-Kun, Li Ze-Yang, Xu Kang, Wang Zi-Zheng
PDF
HTML
Get Citation
  • Self-testing is the high-level security verification of a claimed quantum device, confirming the quantum states prepared in the device and the measurements performed based solely on the observed statistics. The statistical correlations can realize the self-testing of the quantum system in the preparing-and-measuring scenario. However, most of previous studies focused on the self-testing of shared entangled states between devices, at present only a few researches are presented and the existing work can only simultaneously self-test the states and measurements when some witness inequalities reach a maximum violation. We focus on four-state preparation and the selected scenarios of two measurements. In this scenario, Armin Tavakoli et al. [Tavakoli A, Kaniewski J, Vértesi T, Rosset D, Brunner N 2018 Phys. Rev. A 98 062307] have put forward a criterion based on the dimensional witness violation inequality which can achieve BB84 particles and corresponding Pauli measurements. However, in addition to the maximum violation of the inequality, any statistics with deviation from the maximum deviation cannot be self-tested. Besides, only the BB84 particle preparation and measurements system can be self-tested with that criterion, resulting in a large number of four-state preparation and two measurement systems that cannot be self-tested. Therefore, in this work, in addition to the maximum violation of that dimension inequality, we directly focus on the full observed statistics and further propose some new criteria for self-testing qubit quantum systems in the preparing-and-measiuring scenarios. And the self-testing criteria are proven in an ideal case. We construct a local isometry by using the constructions commonly used in device-independent cases, exchange the target system with the additional system, and realize the self-testing of more qubit state sets and measurement sets than BB84 particles. This meets the requirements for practical experiments to realize various tasks by different quantum state sets. In addition, we perform a robust analysis of the proposed criteria and use fidelity to describe the closeness of the state to the ideal state of the auxiliary system. Finally, an improved dimensional-dependent NPA method is used to optimize the lower bound of the robustness, making the new criteria practical under experimental noise. We use the YALIMP software package in MATLAB and the solver SEDUMI to solve this optimization problem. The present research increases the diversity of qubit state preparations and self-testing of measurement system, which is beneficial to the actual self-testing of different non-entangled single quantum systems.
      Corresponding author: Wang Yu-Kun, wykun06@gmail.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 62101600), the Science Foundation of China University of Petroleum, Beijing, China (Grant No. 2462021YJRC008), and the State Key Laboratory of Cryptology, China (Grant No. MMKFKT202109).
    [1]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501Google Scholar

    [2]

    Mayers D, Yao A 2004 Quant. Inf. Comput. 4 273Google Scholar

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bell J S 1964 Physics Physique Fizika 1 195Google Scholar

    [5]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [6]

    Pironio S, Acín A, Massar S, de La Giroday A B, Matsukevich D N, Maunz P, Olmschenk S, Hayes D, Luo L, Manning T A, Monroe C 2010 Nature 464 1021Google Scholar

    [7]

    Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548Google Scholar

    [8]

    Aharon N, Massar S, Pironio S, Silman J 2016 New J. Phys. 18 025014Google Scholar

    [9]

    Maitra A, Paul G, Roy S 2017 Phys. Rev. A 95 042344Google Scholar

    [10]

    Gheorghiu A, Kashefi E, Wallden P 2015 New J. Phys. 17 083040Google Scholar

    [11]

    Bancal J D, Navascués M, Scarani V, Vértesi T, Yang T H, 2015 Phys. Rev. A 91 022115Google Scholar

    [12]

    Wang Y K, Wu X Y, Scarani V 2016 New J. Phys. 18 025021Google Scholar

    [13]

    Pál K F, Vértesi T, Navascués M 2014 Phys. Rev. A 90 042340Google Scholar

    [14]

    Baccari F, Augusiak R, Šupić I, Tura J, Acín A 2020 Phys. Rev. Lett. 124 020402Google Scholar

    [15]

    Šupić I, Bowles J 2020 Quantum 4 337Google Scholar

    [16]

    Li X H, Wang Y K, Han Y G, Qin S J, Gao F and Wen Q Y 2020 IEEE J. Sel. Areas Commun. 38 589Google Scholar

    [17]

    Coladangelo A, Goh K T, Scarani V 2017 Nat. Commun. 8 15485Google Scholar

    [18]

    Šupić I, Hoban M J 2016 New J. Phys. 18 075006Google Scholar

    [19]

    Tavakoli A, Kaniewski J, Vértesi T, Rosset D, Brunner N 2018 Phys. Rev. A 98 062307Google Scholar

    [20]

    Ambainis A, Leung D, Mancinska L, Ozols M 2008 arXiv: 0810.2937

    [21]

    Hayashi M, Iwama K, Nishimura H, Raymond R, Yamashita S 2006 New J. Phys. 8 129Google Scholar

    [22]

    Pawłowski M, Brunner N 2011 Phys. Rev. A 84 010302(RGoogle Scholar

    [23]

    Li H W, Pawłowski M, Yin Z Q, Guo G C, Han Z F 2012 Phys. Rev. A 85 052308Google Scholar

    [24]

    Masanes L 2003 arXiv: quant-ph/0309137 [quant-ph]

    [25]

    Masanes L 2005 arXiv: quant-ph/0512100 [quant-ph]

    [26]

    McKague M, Yang T H, Scarani V 2012 J. Phys. A Math. Theor. 45 455304Google Scholar

    [27]

    Yang T H, Vértesi T, Bancal J D, Scarani V, Navascués M 2014 Phys. Rev. Lett. 113 040401Google Scholar

    [28]

    Scarani V 2012 Acta Phys. Slovaca. 62 347Google Scholar

    [29]

    Wu X Y, Cai Y, Yang T H, Le H N, Bancal J D, and Scarani V 2014 Phys. Rev. A 90 042339Google Scholar

    [30]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [31]

    Navascués M, Pironio S, Acín A 2007 Phys. Rev. Lett. 98 010401Google Scholar

    [32]

    Navascués M, Pironio S, Acín A 2008 New J. Phys. 10 073013Google Scholar

    [33]

    Navascués M, de la Torre G, Vértesi T 2014 Phys. Rev. X 4 011011Google Scholar

    [34]

    Navascués M, Vértesi T 2015 Phys. Rev. Lett. 115 020501Google Scholar

    [35]

    Li H W, Mironowicz P, Pawłowski M, Yin Z Q, Wu Y C, Wang S, Chen W, Hu H G, Guo G C, Han Z F 2013 Phys. Rev. A 87 020302(RGoogle Scholar

    [36]

    Mironowicz P, Li H W, Pawłowski M 2014 Phys. Rev. A 90 022322Google Scholar

    [37]

    Lofberg J YALMIP: A Toolbox for Modeling and Optimization in MATLAB, Proceedings of the CACSD Conference Taipei, China, September 24, 2004

    [38]

    Sturm J F 1999 Optim. Methods Softw. 11 625Google Scholar

  • 图 1  制备测量量子系统示意图, 其中Alice一侧随机制备4个量子态由x来控制态的选择; Bob一侧随机从两个测量基中进行选择, 以测量发送来的量子态, 由y控制

    Figure 1.  Schematic diagram of the preparation measurement quantum system, in which four quantum states are randomly prepared on Alice’s site and x controls the selection of states. The measurements in Bob’s site are randomly selected from two measurement bases with y.

    图 2  允许对制备状态和相应测量操作进行自测试的局域同构映射, $ H $为哈达玛门, $ Z $$ X $为与泡利$ {\sigma }_{x} $, $ {\sigma }_{z} $门局域等价的门, ${\left|0\right.\rangle}_{{\rm{a}}{\rm{n}}{\rm{c}}{\rm{i}}{\rm{l}}{\rm{l}}{\rm{a}}}$是辅助系统, 具有所需自测试系统的正确维度, 并将输入态系统记为主(Main)系统

    Figure 2.  The local isometry for the prepared states and corresponding measurements. $ H $is the Hadamar gate, $ Z $and$ X $is the locally equivalent gate to the Pauli gate$ {\sigma }_{x}, {\sigma }_{z} $.${\left|0\right.\rangle}_{{\rm{a}}{\rm{n}}{\rm{c}}{\rm{i}}{\rm{l}}{\rm{l}}{\rm{a}}}$ is ancilla system, which has the correct dimensions for the system to be self-tested, and the input-state system is labeled as the Main system.

    图 3  t${\rm{和}}{t}'$行的态及测量操作所对应方向的空间位置关系

    Figure 3.  The spatial position relation of the states and the measurements directions in t and ${t}'$ rows.

    图 4  单态保真度$ F $的下限. 在相关性误差为$ \varepsilon $时, 4种自测试标准的鲁棒性$(\theta ={\text{π}}/2, {\alpha }_{00}={\text{π}}/4, {\alpha }_{01}={\text{π}}/4, 2{\text{π}}/3,$ $7{\text{π}}/12, {\text{π}}/2)$

    Figure 4.  Lower bound for the certifiable singlet fidelity F as a function of the imperfection of the observed correlations ε. We plot the bounds for four-setting criteria $(\theta ={\text{π}}/2, {\alpha }_{00}= $$ {\text{π}}/4, {\alpha }_{01}={\text{π}}/4, 2{\text{π}}/3, 7{\text{π}}/12, {\text{π}}/2)$.

    表 1  QRAC实验中统计值$ {\rm{t}}{\rm{r}}\left({\rho }_{00}{M}_{y}\right) $在Bloch球上的表示

    Table 1.  The Bloch sphere expression of the value of $ {\rm{t}}{\rm{r}}\left({\rho }_{00}{M}_{y}\right) $ in QRAC experiment

    制备态测量基
    $ {M}_{0} $$ {M}_{1} $
    $ {\rho }_{00} $$ {\rm{t}}{\rm{r}}\left({\rho }_{00}{M}_{0}\right)={\boldsymbol{r}}_{00}\cdot {\boldsymbol{b}}_{0} $$ {\rm{t}}{\rm{r}}\left({\rho }_{00}{M}_{1}\right)={\boldsymbol{r}}_{00}\cdot {\boldsymbol{b}}_{1} $
    $ {\rho }_{01} $$ {\rm{t}}{\rm{r}}\left({\rho }_{01}{M}_{0}\right)={\boldsymbol{r}}_{01}\cdot {\boldsymbol{b}}_{0} $$ {\rm{t}}{\rm{r}}\left({\rho }_{01}{M}_{1}\right)={\boldsymbol{r}}_{01}\cdot {\boldsymbol{b}}_{1} $
    $ {\rho }_{10} $$ {\rm{t}}{\rm{r}}\left({\rho }_{10}{M}_{0}\right)={\boldsymbol{r}}_{10}\cdot {\boldsymbol{b}}_{0} $$ {\rm{t}}{\rm{r}}\left({\rho }_{10}{M}_{1}\right)={\boldsymbol{r}}_{10}\cdot {\boldsymbol{b}}_{1} $
    $ {\rho }_{11} $$ {\rm{t}}{\rm{r}}\left({\rho }_{11}{M}_{0}\right)={\boldsymbol{r}}_{11}\cdot {\boldsymbol{b}}_{0} $$ {\rm{t}}{\rm{r}}\left({\rho }_{11}{M}_{1}\right)={\boldsymbol{r}}_{11}\cdot {\boldsymbol{b}}_{1} $
    DownLoad: CSV
    Baidu
  • [1]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett. 98 230501Google Scholar

    [2]

    Mayers D, Yao A 2004 Quant. Inf. Comput. 4 273Google Scholar

    [3]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [4]

    Bell J S 1964 Physics Physique Fizika 1 195Google Scholar

    [5]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [6]

    Pironio S, Acín A, Massar S, de La Giroday A B, Matsukevich D N, Maunz P, Olmschenk S, Hayes D, Luo L, Manning T A, Monroe C 2010 Nature 464 1021Google Scholar

    [7]

    Liu Y, Zhao Q, Li M H, Guan J Y, Zhang Y, Bai B, Zhang W, Liu W Z, Wu C, Yuan X, Li H, Munro W J, Wang Z, You L, Zhang J, Ma X, Fan J, Zhang Q, Pan J W 2018 Nature 562 548Google Scholar

    [8]

    Aharon N, Massar S, Pironio S, Silman J 2016 New J. Phys. 18 025014Google Scholar

    [9]

    Maitra A, Paul G, Roy S 2017 Phys. Rev. A 95 042344Google Scholar

    [10]

    Gheorghiu A, Kashefi E, Wallden P 2015 New J. Phys. 17 083040Google Scholar

    [11]

    Bancal J D, Navascués M, Scarani V, Vértesi T, Yang T H, 2015 Phys. Rev. A 91 022115Google Scholar

    [12]

    Wang Y K, Wu X Y, Scarani V 2016 New J. Phys. 18 025021Google Scholar

    [13]

    Pál K F, Vértesi T, Navascués M 2014 Phys. Rev. A 90 042340Google Scholar

    [14]

    Baccari F, Augusiak R, Šupić I, Tura J, Acín A 2020 Phys. Rev. Lett. 124 020402Google Scholar

    [15]

    Šupić I, Bowles J 2020 Quantum 4 337Google Scholar

    [16]

    Li X H, Wang Y K, Han Y G, Qin S J, Gao F and Wen Q Y 2020 IEEE J. Sel. Areas Commun. 38 589Google Scholar

    [17]

    Coladangelo A, Goh K T, Scarani V 2017 Nat. Commun. 8 15485Google Scholar

    [18]

    Šupić I, Hoban M J 2016 New J. Phys. 18 075006Google Scholar

    [19]

    Tavakoli A, Kaniewski J, Vértesi T, Rosset D, Brunner N 2018 Phys. Rev. A 98 062307Google Scholar

    [20]

    Ambainis A, Leung D, Mancinska L, Ozols M 2008 arXiv: 0810.2937

    [21]

    Hayashi M, Iwama K, Nishimura H, Raymond R, Yamashita S 2006 New J. Phys. 8 129Google Scholar

    [22]

    Pawłowski M, Brunner N 2011 Phys. Rev. A 84 010302(RGoogle Scholar

    [23]

    Li H W, Pawłowski M, Yin Z Q, Guo G C, Han Z F 2012 Phys. Rev. A 85 052308Google Scholar

    [24]

    Masanes L 2003 arXiv: quant-ph/0309137 [quant-ph]

    [25]

    Masanes L 2005 arXiv: quant-ph/0512100 [quant-ph]

    [26]

    McKague M, Yang T H, Scarani V 2012 J. Phys. A Math. Theor. 45 455304Google Scholar

    [27]

    Yang T H, Vértesi T, Bancal J D, Scarani V, Navascués M 2014 Phys. Rev. Lett. 113 040401Google Scholar

    [28]

    Scarani V 2012 Acta Phys. Slovaca. 62 347Google Scholar

    [29]

    Wu X Y, Cai Y, Yang T H, Le H N, Bancal J D, and Scarani V 2014 Phys. Rev. A 90 042339Google Scholar

    [30]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [31]

    Navascués M, Pironio S, Acín A 2007 Phys. Rev. Lett. 98 010401Google Scholar

    [32]

    Navascués M, Pironio S, Acín A 2008 New J. Phys. 10 073013Google Scholar

    [33]

    Navascués M, de la Torre G, Vértesi T 2014 Phys. Rev. X 4 011011Google Scholar

    [34]

    Navascués M, Vértesi T 2015 Phys. Rev. Lett. 115 020501Google Scholar

    [35]

    Li H W, Mironowicz P, Pawłowski M, Yin Z Q, Wu Y C, Wang S, Chen W, Hu H G, Guo G C, Han Z F 2013 Phys. Rev. A 87 020302(RGoogle Scholar

    [36]

    Mironowicz P, Li H W, Pawłowski M 2014 Phys. Rev. A 90 022322Google Scholar

    [37]

    Lofberg J YALMIP: A Toolbox for Modeling and Optimization in MATLAB, Proceedings of the CACSD Conference Taipei, China, September 24, 2004

    [38]

    Sturm J F 1999 Optim. Methods Softw. 11 625Google Scholar

  • [1] Wang Jian-Wei, Zhao Nai-Xuan, Wang Chu-Pei, Xiang Ling-Hui, Wen Ting-Xin. Robustness paradox of cascading dynamics in interdependent networks. Acta Physica Sinica, 2024, 73(21): 218901. doi: 10.7498/aps.73.20241002
    [2] Xu Yao-Kun, Sun Shi-Hai, Zeng Yao-Yuan, Yang Jun-Gang, Sheng Wei-Dong, Liu Wei-Tao. General theory of quantum holography based on two-photon Interference. Acta Physica Sinica, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [3] Yang Wu-Hua, Wang Cai-Lin, Zhang Ru-Liang, Zhang Chao, Su Le. Study on avalanche ruggedness of high voltage IGBTs. Acta Physica Sinica, 2023, 72(7): 078501. doi: 10.7498/aps.72.20222248
    [4] Zhao Hao, Feng Jin-Xia, Sun Jing-Ke, Li Yuan-Ji, Zhang Kuan-Shou. Entanglement robustness of continuous variable Einstein-Podolsky-Rosen-entangled state distributed over optical fiber channel. Acta Physica Sinica, 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [5] Xue Xiao-Dan, Wang Mei-Li, Shao Yu-Zhu, Wang Jun-Song. Neural firing rate homeostasis via inhibitory synaptic plasticity. Acta Physica Sinica, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [6] Hou Lü-Lin, Lao Song-Yang, Xiao Yan-Dong, Bai Liang. Recent progress in controllability of complex network. Acta Physica Sinica, 2015, 64(18): 188901. doi: 10.7498/aps.64.188901
    [7] Chen Shi-Ming, Lü Hui, Xu Qing-Gang, Xu Yun-Fei, Lai Qiang. The model of interdependent network based on positive/negativecorrelation of the degree and its robustness study. Acta Physica Sinica, 2015, 64(4): 048902. doi: 10.7498/aps.64.048902
    [8] Duan Dong-Li, Wu Xiao-Yue. Cascading failure of scale-free networks based on a tunable load redistribution model. Acta Physica Sinica, 2014, 63(3): 030501. doi: 10.7498/aps.63.030501
    [9] Chen Shi-Ming, Zou Xiao-Qun, Lü Hui, Xu Qing-Gang. Research on robustness of interdependent network for suppressing cascading failure. Acta Physica Sinica, 2014, 63(2): 028902. doi: 10.7498/aps.63.028902
    [10] Ren Zhuo-Ming, Shao Feng, Liu Jian-Guo, Guo Qiang, Wang Bing-Hong. Node importance measurement based on the degree and clustering coefficient information. Acta Physica Sinica, 2013, 62(12): 128901. doi: 10.7498/aps.62.128901
    [11] Zhou Wu-Jie, Yu Mei, Yu Si-Min, Jiang Gang-Yi, Ge Ding-Fei. A zero-watermarking algorithm of stereoscopic image based on hyperchaotic system. Acta Physica Sinica, 2012, 61(8): 080701. doi: 10.7498/aps.61.080701
    [12] Zhao Long. Robust inertial terrain aided navigation algorithm. Acta Physica Sinica, 2012, 61(10): 104301. doi: 10.7498/aps.61.104301
    [13] Miao Zhi-Qiang, Wang Yao-Nan. Robust adaptive radial wavelet neural network control for chaotic systems using backstepping design. Acta Physica Sinica, 2012, 61(3): 030503. doi: 10.7498/aps.61.030503
    [14] Wen Shu-Huan, Yuan Jun-Ying. Force control of uncertain robot based on the passivity. Acta Physica Sinica, 2010, 59(3): 1615-1619. doi: 10.7498/aps.59.1615
    [15] Wang Jiao-Jiao, Yan Hua, Wei Ping. Anticipating projective response in coupled dynamical systems. Acta Physica Sinica, 2010, 59(11): 7635-7643. doi: 10.7498/aps.59.7635
    [16] Zeng Gao-Rong, Qiu Zheng-Ding. Evaluation model for robustness of digital watermarking. Acta Physica Sinica, 2010, 59(8): 5870-5879. doi: 10.7498/aps.59.5870
    [17] Zou Lu-Juan, Wang Bo, Feng Jiu-Chao. A digital watermarking algorithm based on chaos and fractional Fourier transformation. Acta Physica Sinica, 2008, 57(5): 2750-2754. doi: 10.7498/aps.57.2750
    [18] Gong Li-Hua. Study of chaos control based on adaptive pulse perturbation. Acta Physica Sinica, 2005, 54(8): 3502-3507. doi: 10.7498/aps.54.3502
    [19] Liu Fu-Cai, Wang Juan, Shi Miao, Gao Xiu-Wei. Nonlinear continuous predictive variable structure control and synchronization of chaotic systems. Acta Physica Sinica, 2002, 51(12): 2707-2712. doi: 10.7498/aps.51.2707
    [20] WU WEI-GEN, GU TIAN-XIANG. NONLINEAR FEEDBACK FOLLOWING CONTROL OF CHAOTIC SYSTEMS. Acta Physica Sinica, 2000, 49(10): 1922-1925. doi: 10.7498/aps.49.1922
Metrics
  • Abstract views:  3846
  • PDF Downloads:  87
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2022
  • Accepted Date:  28 February 2023
  • Available Online:  06 April 2023
  • Published Online:  20 May 2023

/

返回文章
返回
Baidu
map