搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超表面的无磁性材料环行器

邱天硕 王甲富 李勇峰 王军 闫明宝 屈绍波

引用本文:
Citation:

基于超表面的无磁性材料环行器

邱天硕, 王甲富, 李勇峰, 王军, 闫明宝, 屈绍波

Magnetless circulator based on phase gradient metasurface

Qiu Tian-Shuo, Wang Jia-Fu, Li Yong-Feng, Wang Jun, Yan Ming-Bao, Qu Shao-Bo
PDF
导出引用
  • 目前,广泛应用环行器均需要铁氧体材料并外加偏置磁场以达到环行效果,具有重量大,对温度敏感等缺点. 本文基于透射型相位梯度超表面,利用相位梯度超表面的异常折射特性,基于几何光学原理设计了一种无需铁氧体材料和外加磁偏置的环行器. 实验结果说明,在20.8 GHz附近,该器件呈现显著的环行效果. 这种环行器重量显著降低,对温度变化不敏感,提供了一种环行器设计的新思路,具有潜在的应用前景.
    Circulators are widely used microwave components that rely on magnetic materials. They have been a subject of extensively theoretical and experimental development for over 50 years. Nowadays, commercial circulators require ferrite and external bias magnetic field to realize circulation performance. However, ferrite circulators suffer major drawbacks: they are too heavy, incompatible with integrated circuit technologies, expensive, sensitive to temperature, etc. So, it is very hard to further improve the characteristic of traditional ferrite circulator. And it is important to overcome the major drawbacks of the traditional ferrite circulator. In this paper, the anomalous refraction feature of the phase gradient metasurface is utilized to realize nonreciprocal characteristics. Magnetless circulator based on phase gradient metasurface is proposed and then analyzed. The circulator consists of phase gradient metasurfaces and a three-port waveguide. Three metasurfaces are arranged into 60-degree angle with respect to each other. The metasurface shows high efficiency in anomalous refraction. With the help of phase gradient metamaterial, the signal can only be refracted to the next port in rotation along one direction. That makes the circulation performance. To design and optimize the circulator for better circulation performance, the numerical simulations are performed using the full-wave electromagnetic simulator CST Microwave Studio 2013. To verify the design of the circulator based on phase gradient metasurface, the circulator is fabricated using waveguide and metasurfaces. The scattering parameters of the magnetless circulator based on phase gradient metasurface are measured using a vector network analyzer (Agilent N5230 A). The measured S-parameters show that the circulator exhibits good circulation performances at a frequency of 20.8 GHz. At 20.8 GHz, the insertion loss is 0.8 dB. And the return loss and isolation degree can reach -10 dB. In this paper, a new method is used to design the circulators. This work makes it possible to reduce the weight of the device. Moreover, it is also insensitive to temperature. Therefore, we can make a conclusion that the magnetless circulator based on phase gradient metasurface has potential value in application. However, there is still lots of work to do to improve the performance of the circulator. In future work, we will use wideband metasurfaces to broaden the bandwidth, improve the isolation degree, reduce the insertion loss, and reduce the return loss. And free space can be lead into the circulator to reduce the bulk of the circulator and improve the circulation performance.
      Corresponding author: Wang Jia-Fu, wangjiafu1981@126.com;qushaobo@126.com ; Qu Shao-Bo, wangjiafu1981@126.com;qushaobo@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 61501503, 11274389, 11304393, 11504428) and the China Postdoctoral Science Foundation (Grant No. 2015M572561).
    [1]

    Harris V G, Geiler A, Chen Y, Yoon S D, Wu M, Yang A 2009 J. Mag. Mag. Mater. 321 2035

    [2]

    Zuo X, How H, Somu S, Vittoria C 2003 IEEE Trans. Magn. 39 3160

    [3]

    Carignan L P, Yelon A, Mnard D, Caloz C 2011 IEEE Trans. Microwave Theory Tech. 59 2568

    [4]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [5]

    Aieta F, Genevet P, Yu N, Kats A M, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [6]

    Nathaniel K, Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor Z A, Dalvit D A R, Chen H T 2013 Seience 340 1304

    [7]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103]

    [8]

    Nader Engheta N 2011 Science 334 317

    [9]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, ShalaevV M 2012 Science 335 427

    [10]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, ReitenM T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 34 01304

    [11]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [12]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [13]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [14]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [15]

    Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567

    [16]

    Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O'Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 027152

  • [1]

    Harris V G, Geiler A, Chen Y, Yoon S D, Wu M, Yang A 2009 J. Mag. Mag. Mater. 321 2035

    [2]

    Zuo X, How H, Somu S, Vittoria C 2003 IEEE Trans. Magn. 39 3160

    [3]

    Carignan L P, Yelon A, Mnard D, Caloz C 2011 IEEE Trans. Microwave Theory Tech. 59 2568

    [4]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [5]

    Aieta F, Genevet P, Yu N, Kats A M, Gaburro Z, Capasso F 2012 Nano Lett. 12 1702

    [6]

    Nathaniel K, Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor Z A, Dalvit D A R, Chen H T 2013 Seience 340 1304

    [7]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 63 084103]

    [8]

    Nader Engheta N 2011 Science 334 317

    [9]

    Ni X, Emani N K, Kildishev A V, Boltasseva A, ShalaevV M 2012 Science 335 427

    [10]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, ReitenM T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 34 01304

    [11]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [12]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [13]

    Yu J B, Ma H, Wang J F, Li Y F, Feng M D, Qu S B 2015 Chin. Phys. B 24 098102

    [14]

    Wang J F, Qu S B, Ma H, Xu Z, Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [15]

    Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, Zhang W 2013 Adv. Mater. 25 4567

    [16]

    Su X Q, Ouyang C M, Xu N N, Cao W, Wei X, Song G F, Gu J Q, Tian Z, O'Hara J F, Han J G, Zhang W L 2015 Opt. Express 23 027152

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态.  , 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性.  , 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬.  , 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [4] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面.  , 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [5] 范辉颖, 罗杰. 非厄密电磁超表面研究进展.  , 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [6] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置.  , 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [9] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束.  , 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究.  , 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [12] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制.  , 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [13] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [14] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展.  , 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [15] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计.  , 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜.  , 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面.  , 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面.  , 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射.  , 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [20] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
计量
  • 文章访问数:  7792
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-07
  • 修回日期:  2016-06-27
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map