-
The proton beam energy deposition and the prodution of proton beams in proton fast ignition are investigated with the fluid program, partice-in-cell program and Fokker-Planck program based on the parameters of Shenguang II upgraded device. Firstly, according to the target parameters of fast ignition, the energy depositions of different energy protons are investigated. It is obtained that the higher the incident proton energy, the higher the surface density that the protons go through, accordingly the longer the proton deposition distance in the same background plasma density. On the assumption that the diameter of the compression core is 20–30 μm, and that the protons deposited in the core give the energy to the background plasma, the energy of the proton required by fast ignition is obtained by Fokker-Planck simulation. Protons with energy of 7–12 MeV are appropriate for ignition when the background plasma density is 300 g/cm3, while 8–18 MeV protons for 400 g/cm3. The background plasma temperatures are both 5 keV in the two cases. Secondly, we use particle-in-cell program to study the proton acceleration with or without preplasma which is given by fluid program with using the laser intensity
$ I = 5.4 \times {10^{19}}{\text{ }}{\rm{W/c}}{{\rm{m}}^2} $ based on the parameters of Shenguang II upgraded device. The laser has 350 J of enegy, 3 ps of Gaussion pluse width and 10 µm of spot radius. The curvature of the target which is 10 µm thick copper coated with 1 µm thick hydrogen plasma, is 500 µm. The maximum proton energy obtained with preplama is 22 MeV, however the maximum proton energy obtained without preplasma is 17.5 MeV. The conversion efficiency from laser to protons is 5.12% with preplasma and 4.15% without preplasma. The conversion efficiency with preplasma is 20% higher than that without preplasma. We also study the mechanisms of the acceleration in the two situations. The freely expanding plasma model is used to explain the acceleration mechanism. The simulated electric field is smaller than that calculated by using the freely expanding plasma model, because some protons are accelerated at the time of plasma expansion, which consumes some electric field. The results of proton energy deposition show that the proton beams that are suitable for fast ignition can be obtained by the Shenguang II upgraded device.-
Keywords:
- proton fast ignition /
- energy deposition /
- proton acceleration
[1] Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113
Google Scholar
[2] Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30
Google Scholar
[3] Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703
Google Scholar
[4] Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711
Google Scholar
[5] Davies J R 2009 Plasma Phys. Control. Fusion 51 014006
Google Scholar
[6] Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004
Google Scholar
[7] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626
Google Scholar
[8] Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383
Google Scholar
[9] Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447
Google Scholar
[10] Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003
Google Scholar
[11] Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798
Google Scholar
[12] Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[13] Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076
Google Scholar
[14] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542
Google Scholar
[15] Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363
Google Scholar
[16] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436
Google Scholar
[17] Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1
Google Scholar
[18] Key M H 2007 Phys. Plasmas 14 055502
Google Scholar
[19] Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440
Google Scholar
[20] Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098
Google Scholar
[21] Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017
Google Scholar
[22] Shmatov M L 2003 Fusion Sci. Technol. 43 456
Google Scholar
[23] Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061
Google Scholar
[24] Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441
Google Scholar
[25] Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016
Google Scholar
[26] Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639
Google Scholar
[27] 徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505
Google Scholar
Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505
Google Scholar
[28] Davies J R 2002 Phys. Rev. E 65 026407
Google Scholar
[29] Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703
Google Scholar
[30] Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308
Google Scholar
[31] Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314
Google Scholar
[32] Fano U 1963 Annu. Rev. Nucl. Sci. 13 1
Google Scholar
[33] Chang J S, Copper G 1970 J. Comput. Phys. 6 1
Google Scholar
[34] Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401
Google Scholar
[35] Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901
Google Scholar
[36] Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002
Google Scholar
[37] He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R
Google Scholar
[38] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 58 363
Google Scholar
He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363
Google Scholar
[39] 何民卿, 董全力, 盛政明, 张杰 2015 64 105202
Google Scholar
He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202
Google Scholar
[40] Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402
Google Scholar
[41] Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414
Google Scholar
[42] Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040
Google Scholar
[43] Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701
Google Scholar
[44] Denavit J 1979 Phys. Fluids 22 1384
Google Scholar
-
图 4 (a) 二维粒子模拟得到的质子能谱图(Ep为质子能量, dN/dEp为单位能量粒子数); (b) 最高质子能随激光能量分布图(EL为入射激光能量, Ep,max为最大质子能量)
Figure 4. (a) Proton energy spectrum from PIC simulation (Ep is the proton energy, dN/dE is the number of protons per unit energy); (b) the maximum proton energy vs. laser energy (EL is the laser energy, Ep,max is the maximum proton energy).
表 1 二维粒子模拟得到的无预等离子体和有预等离子时质子束品质比较.
Table 1. Proton qualities with preplasma or without preplasma by 2D PIC simulations.
转化效率/% 最高质子能/MeV 质子数/个 (7—18 MeV) 无预等离子体 4.25 17 7.81×1012 有预等离子体 5.12 25 1.01×1013 -
[1] Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113
Google Scholar
[2] Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30
Google Scholar
[3] Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703
Google Scholar
[4] Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711
Google Scholar
[5] Davies J R 2009 Plasma Phys. Control. Fusion 51 014006
Google Scholar
[6] Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004
Google Scholar
[7] Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626
Google Scholar
[8] Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383
Google Scholar
[9] Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447
Google Scholar
[10] Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003
Google Scholar
[11] Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798
Google Scholar
[12] Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
[13] Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076
Google Scholar
[14] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542
Google Scholar
[15] Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363
Google Scholar
[16] Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436
Google Scholar
[17] Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1
Google Scholar
[18] Key M H 2007 Phys. Plasmas 14 055502
Google Scholar
[19] Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440
Google Scholar
[20] Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098
Google Scholar
[21] Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017
Google Scholar
[22] Shmatov M L 2003 Fusion Sci. Technol. 43 456
Google Scholar
[23] Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061
Google Scholar
[24] Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441
Google Scholar
[25] Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016
Google Scholar
[26] Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639
Google Scholar
[27] 徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505
Google Scholar
Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505
Google Scholar
[28] Davies J R 2002 Phys. Rev. E 65 026407
Google Scholar
[29] Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703
Google Scholar
[30] Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308
Google Scholar
[31] Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314
Google Scholar
[32] Fano U 1963 Annu. Rev. Nucl. Sci. 13 1
Google Scholar
[33] Chang J S, Copper G 1970 J. Comput. Phys. 6 1
Google Scholar
[34] Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401
Google Scholar
[35] Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901
Google Scholar
[36] Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002
Google Scholar
[37] He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(R
Google Scholar
[38] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 58 363
Google Scholar
He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363
Google Scholar
[39] 何民卿, 董全力, 盛政明, 张杰 2015 64 105202
Google Scholar
He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202
Google Scholar
[40] Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402
Google Scholar
[41] Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414
Google Scholar
[42] Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040
Google Scholar
[43] Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701
Google Scholar
[44] Denavit J 1979 Phys. Fluids 22 1384
Google Scholar
Catalog
Metrics
- Abstract views: 3958
- PDF Downloads: 76
- Cited By: 0