Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Focusing effect of channel target on ultra-intense laser-accelerated proton beam

Yang Si-Qian Zhou Wei-Min Wang Si-Ming Jiao Jin-Long Zhang Zhi-Meng Cao Lei-Feng Gu Yu-Qiu Zhang Bao-Han

Citation:

Focusing effect of channel target on ultra-intense laser-accelerated proton beam

Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In laser proton acceleration, the inevitable transverse divergence of proton beam restricts its applications in many fields. In this paper, a structured target with a properly wide channel attached to the backside of a foil is proposed, and the interaction of the ultra-short laser pulse with the structured channel target is investigated via two-dimensional particle-in-cell simulation. The simulations show that for the structured channel target, electrons on the front surface are heated by the incident high-intensity laser pulse and then the induced hot electrons transport through the target to the rear surface, building an electrostatic field in the longitudinal direction to accelerate the protons to high energies as the typical target normal sheath acceleration scheme. In the case of the structured channel target, the simulation results indicate that a strong transverse electrostatic field is created by charge separation along the inner surface of the channel while hot electrons propagate along the channel side walls under the guidance of self-induced magnetic and electric fields, which can focus the emitted proton beam transversely, leading to a smaller divergence. By comparing the channel target case with the traditional foil target case under the same conditions, it is found that the divergence angle of the proton beam from the channel target is reduced significantly. Protons with energies above 3 MeV have a divergence angle of 5.3° at the time of 500 fs in the channel target case, while the value is 17.1° in the foil case for a laser intensity of 5.4×1019 W/cm2. Additionally, the effect of the channel target on the maximum proton energy is considered. The simulation results of the energy spectra reveal that the maximum proton cut-off energy of the channel target is about 1 MeV lower than that of the foil target. This small energy loss is due to the refluxing of the cold electrons on the channel walls, which suppresses the increasing of the sheath potential. Therefore, it is concluded that the focusing electric field can work on the proton beam effectively, leading to a better collimation with conserving the proton energy by using the proposed channel target. Especially when the inner diameter of the channel target is comparable to the laser focal spot size, the proton beam can be confined to a small divergence, and a relatively higher laser energy conversion efficiency can be ensured as well.
      Corresponding author: Zhou Wei-Min, zhouwm@caep.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174259, 11175165) and the Science Challenge Project, China (Grant No. TZ2016005).
    [1]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [2]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436

    [3]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240

    [4]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001

    [5]

    Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103(in Chinese)[滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋2013 62 114103]

    [6]

    Ledingham K W, Mckenna P, Singhal R P 2003 Science 300 1107

    [7]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [8]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [9]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001

    [10]

    Silva L O, Mori W B, Bingham R, Dawson J M, Antonsen T M, Mora P 2004 Phys. Rev. Lett. 92 015002

    [11]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363(in Chinese)[何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰2009 58 363]

    [12]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser Part. Beams 24 291

    [13]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [14]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [15]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [16]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [17]

    Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M 2003 Phys. Rev. Lett. 91 255002

    [18]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, Le Sage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [19]

    Carroll D C, Mckenna P, Lundh O, Lindau F, Wahlström C G, Bandyopadhyay S, Pepler D, Neely D, Kar S, Simpson P T 2007 Phys. Rev. E 76 065401

    [20]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [21]

    Sonobe R, Kawata S, Miyazaki S, Nakamura M, Kikuchi T 2005 Phys. Plasmas 12 073104

    [22]

    Toncian T, Borghesi M, Fuchs J, d'Humières E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410

    [23]

    Nakamura M, Kawata S, Sonobe R, Kong Q, Miyazaki S, Onuma N, Kikuchi T 2007 J. Appl. Phys. 101 113305

    [24]

    Kar S, Markey K, Simpson P T, Bellei C, Green J S, Nagel S R, Kneip S, Carroll D C, Dromey B, Willingale L, Clark E L, McKenna P, Najmudin Z, Krushelnick K, Norreys P, Clarke R J, Neely D, Borghesi M, Zepf M 2008 Phys. Rev. Lett. 100 105004

    [25]

    Yu T P, Ma Y Y, Chen M, Shao F Q, Yu M Y, Gu Y Q, Yin Y 2009 Phys. Plasmas 16 033112

    [26]

    Zhou W, Gu Y, Hong W, Cao L, Zhao Z, Ding Y, Zhang B, Cai H, Mima K 2010 Laser Part. Beams 28 585

    [27]

    Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L, Kawata S 2010 Laser Part. Beams 28 319

    [28]

    Xiao K D, Zhou C T, Qiao B, He X T 2015 Phys. Plasmas 22 093112

    [29]

    Bake M A, Aimidula A, Xiaerding F, Rashidin R 2016 Phys. Plasmas 23 083107

    [30]

    Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z, Kawata S 2012 Chin. Phys. Lett. 29 035202

    [31]

    Yang S, Zhou W, Jiao J, Zhang Z, Cao L, Gu Y, Zhang B 2017 Phys. Plasmas 24 033106

    [32]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103

    [33]

    Nakamura T, Kato S, Nagatomo H, Mima K 2004 Phys. Rev. Lett. 93 265002

  • [1]

    Macchi A, Borghesi M, Passoni M 2013 Rev. Mod. Phys. 85 751

    [2]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436

    [3]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kuznetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240

    [4]

    Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett. 97 045001

    [5]

    Teng J, Zhu B, Wang J, Hong W, Yan Y H, Zhao Z Q, Cao L F, Gu Y Q 2013 Acta Phys. Sin. 62 114103(in Chinese)[滕建, 朱斌, 王剑, 洪伟, 闫永宏, 赵宗清, 曹磊峰, 谷渝秋2013 62 114103]

    [6]

    Ledingham K W, Mckenna P, Singhal R P 2003 Science 300 1107

    [7]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [8]

    Esirkepov T, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [9]

    Yan X Q, Wu H C, Sheng Z M, Chen J E, Meyer-ter-Vehn J 2009 Phys. Rev. Lett. 103 135001

    [10]

    Silva L O, Mori W B, Bingham R, Dawson J M, Antonsen T M, Mora P 2004 Phys. Rev. Lett. 92 015002

    [11]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363(in Chinese)[何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰2009 58 363]

    [12]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser Part. Beams 24 291

    [13]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542

    [14]

    Clark E L, Krushelnick K, Davies J R, Zepf M, Tatarakis M, Beg F N, Machacek A, Norreys P A, Santala M I K, Watts I, Dangor A E 2000 Phys. Rev. Lett. 84 670

    [15]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [16]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [17]

    Fuchs J, Cowan T E, Audebert P, Ruhl H, Gremillet L, Kemp A, Allen M, Blazevic A, Gauthier J C, Geissel M 2003 Phys. Rev. Lett. 91 255002

    [18]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, Le Sage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [19]

    Carroll D C, Mckenna P, Lundh O, Lindau F, Wahlström C G, Bandyopadhyay S, Pepler D, Neely D, Kar S, Simpson P T 2007 Phys. Rev. E 76 065401

    [20]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [21]

    Sonobe R, Kawata S, Miyazaki S, Nakamura M, Kikuchi T 2005 Phys. Plasmas 12 073104

    [22]

    Toncian T, Borghesi M, Fuchs J, d'Humières E, Antici P, Audebert P, Brambrink E, Cecchetti C A, Pipahl A, Romagnani L, Willi O 2006 Science 312 410

    [23]

    Nakamura M, Kawata S, Sonobe R, Kong Q, Miyazaki S, Onuma N, Kikuchi T 2007 J. Appl. Phys. 101 113305

    [24]

    Kar S, Markey K, Simpson P T, Bellei C, Green J S, Nagel S R, Kneip S, Carroll D C, Dromey B, Willingale L, Clark E L, McKenna P, Najmudin Z, Krushelnick K, Norreys P, Clarke R J, Neely D, Borghesi M, Zepf M 2008 Phys. Rev. Lett. 100 105004

    [25]

    Yu T P, Ma Y Y, Chen M, Shao F Q, Yu M Y, Gu Y Q, Yin Y 2009 Phys. Plasmas 16 033112

    [26]

    Zhou W, Gu Y, Hong W, Cao L, Zhao Z, Ding Y, Zhang B, Cai H, Mima K 2010 Laser Part. Beams 28 585

    [27]

    Yang X H, Ma Y Y, Shao F Q, Xu H, Yu M Y, Gu Y Q, Yu T P, Yin Y, Tian C L, Kawata S 2010 Laser Part. Beams 28 319

    [28]

    Xiao K D, Zhou C T, Qiao B, He X T 2015 Phys. Plasmas 22 093112

    [29]

    Bake M A, Aimidula A, Xiaerding F, Rashidin R 2016 Phys. Plasmas 23 083107

    [30]

    Ban H Y, Gu Y J, Kong Q, Li Y Y, Zhu Z, Kawata S 2012 Chin. Phys. Lett. 29 035202

    [31]

    Yang S, Zhou W, Jiao J, Zhang Z, Cao L, Gu Y, Zhang B 2017 Phys. Plasmas 24 033106

    [32]

    Zhang Z M, He X T, Sheng Z M, Yu M Y 2012 Appl. Phys. Lett. 100 134103

    [33]

    Nakamura T, Kato S, Nagatomo H, Mima K 2004 Phys. Rev. Lett. 93 265002

  • [1] Wang Hui-Lin, Liao Yan-Lin, Zhao Yan, Zhang Wen, Chen Zheng-Gen. Simulation study of quasi-monoenergetic high-energy proton beam based on multiple laser beams driving. Acta Physica Sinica, 2023, 72(18): 184102. doi: 10.7498/aps.72.20230313
    [2] Du Bao, Cai Hong-Bo, Zhang Wen-Shuai, Chen Jing, Zou Shi-Yang, Zhu Shao-Ping. Deflection effect of electromagnetic field generated byWeibel instability on proton probe. Acta Physica Sinica, 2019, 68(18): 185205. doi: 10.7498/aps.68.20190775
    [3] Wang Xin-Bo, Zhang Xiao-Ning, Li Yun, Cui Wan-Zhao, Zhang Hong-Tai, Li Yong-Dong, Wang Hong-Guang, Zhai Yong-Gui, Liu Chun-Liang. Particle simulation and analysis of threshold for multicarrier multipactor. Acta Physica Sinica, 2017, 66(15): 157901. doi: 10.7498/aps.66.157901
    [4] Wang Cheng-Zhen, Dong Quan-Li, Liu Ping, Wu Yi-Ying, Sheng Zheng-Ming, Zhang Jie. Particle simulation study on anisotropic pressure of electrons in laser-produced plasma interaction. Acta Physica Sinica, 2017, 66(11): 115203. doi: 10.7498/aps.66.115203
    [5] He Shu-Kai, Liu Dong-Xiao, Jiao Jin-Long, Deng Zhi-Gang, Teng Jian, Zhang Zhi-Meng, Hong Wei, Gu Yu-Qiu. Charged paricle activation analysis for characterizing parameters of laser-accelerated protons. Acta Physica Sinica, 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [6] Yin Chuan-Lei, Wang Wei-Min, Liao Guo-Qian, Li Meng-Chao, Li Yu-Tong, Zhang Jie. Ultrahigh-energy electron beam generated by ultra-intense circularly polarized laser pulses. Acta Physica Sinica, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [7] Chen Mao-Lin, Xia Guang-Qing, Mao Gen-Wang. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system. Acta Physica Sinica, 2014, 63(18): 182901. doi: 10.7498/aps.63.182901
    [8] Chen Zhao-Quan, Yin Zhi-Xiang, Chen Ming-Gong, Liu Ming-Hai, Xu Gong-Lin, Hu Ye-Lin, Xia Guang-Qing, Song Xiao, Jia Xiao-Fen, Hu Xi-Wei. Particle-in-cell simulation on surface-wave discharge process influenced by gas pressure and negative-biased voltage along ion sheath layer. Acta Physica Sinica, 2014, 63(9): 095205. doi: 10.7498/aps.63.095205
    [9] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [10] Zou Chang-Lin, Ye Wen-Hua, Lu Xin-Pei. Study of laser plasma interactions using one-dimensional particle-in-cell code in kinetic regime. Acta Physica Sinica, 2014, 63(8): 085207. doi: 10.7498/aps.63.085207
    [11] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Qiao Hai-Liang, Guo Wei-Jie, Zhang Dian-Hui. Optimal design of high-power microwave source based on particle simulation and genetic algorithms. Acta Physica Sinica, 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [12] Wang Hui-Hui, Liu Da-Gang, Meng Lin, Liu La-Qun, Yang Chao, Peng Kai, Xia Meng-Zhong. The numerical study of full three-dimensional particle in cell/Monte Carlo with gas ionization. Acta Physica Sinica, 2013, 62(1): 015207. doi: 10.7498/aps.62.015207
    [13] Zhang Feng, Huang Shuo, Li Xiao-Feng, Yu Qin, Gu Yan-Jun, Kong Qing. Effect of self-injected electrons driven by paralleled drive electron bunches. Acta Physica Sinica, 2013, 62(24): 242901. doi: 10.7498/aps.62.242901
    [14] Zou De-Bin, Zhuo Hong-Bin, Shao Fu-Qiu, Yin Yan, Ma Yan-Yun, Tian Cheng-Lin, Xu Han, Ouyang Jian-Ming, Xie Xiang-Yun, Chen De-Peng. Theory and simulation of laser pulse trapping and amplifying in the interaction with a thin foil and a solid target. Acta Physica Sinica, 2012, 61(4): 045202. doi: 10.7498/aps.61.045202
    [15] Guo Fan, Li Yong-Dong, Wang Hong-Guang, Liu Chun-Liang, Hu Yi-Xiang, Zhang Peng-Fei, Ma Meng. Particle-in-cell simulation of outer magnetically insulated transmission line of Z-pinch accelerator. Acta Physica Sinica, 2011, 60(10): 102901. doi: 10.7498/aps.60.102901
    [16] Splitting of ultrashort laser pulses propagating in plasmas and the generation of soliton-like structures. Acta Physica Sinica, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [17] Gong Hua-Rong, Gong Yu-Bin, Wei Yan-Yu, Tang Chang-Jian, Xue Dong-Hai, Wang Wen-Xiang. Analysis of ion noise with beam-wave interaction in klystron by two dimensional particle simulation method. Acta Physica Sinica, 2006, 55(10): 5368-5374. doi: 10.7498/aps.55.5368
    [18] Liu Zhan-Jun, Zheng Chun-Yang, Cao Li-Hua, Li Bin, Zhu Shao-Ping. Influence of under-dense plasma on laser conical target interaction. Acta Physica Sinica, 2006, 55(1): 304-309. doi: 10.7498/aps.55.304
    [19] Zhuo Hong-Bin, Hu Qing-Feng, Liu Jie, Chi Li-Hua, Zhang Wen-Yong. Quasi-static particle simulation of short pulse laser-plasma interaction. Acta Physica Sinica, 2005, 54(1): 197-201. doi: 10.7498/aps.54.197
    [20] Zhang Qiu-Ju, Sheng Zheng-Ming, Zhang Jie. Redshift of harmonics by laser interaction with solid target. Acta Physica Sinica, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
Metrics
  • Abstract views:  5748
  • PDF Downloads:  210
  • Cited By: 0
Publishing process
  • Received Date:  20 March 2017
  • Accepted Date:  04 May 2017
  • Published Online:  05 September 2017

/

返回文章
返回
Baidu
map