-
高能粒子在等离子体中的能量沉积及其导致的电子离子能量分配对理解惯性约束聚变的点火和燃烧过程至关重要.基于量子动理学的T矩阵扩展模型,本文研究了宽广温度密度区间的能量沉积和电子能量分配因子.相较于基于小角度散射的阻止本领模型,T矩阵扩展模型能考虑由大角度库仑散射及其累积过程带来的横向偏转效应.本文首先研究了横向偏转效应对电子能量分配因子的影响,然后计算了宽温度密度区间的电子能量分配因子,基于这些数据的分析发展了适用于惯性约束聚变模拟的电子能量分配因子拟合表达式.研究发现,考虑横向偏转效应会对电子能量分配因子带来约27.5%的差异.这一结论表明,准确描述高能粒子能量沉积过程中的大角度库仑散射及其累积效应带来的横向偏转会影响惯性约束聚变点火和燃烧的模拟的精确性.Accurate knowledge of energy deposition of energetic ions and the resulting electron-ion energy partition in dense plasmas is of essential importance for understanding the hot-spot ignition and burning of inertial confinement fusion. In the present work, the energy deposition and the electron-ion energy partition of energetic ions are studied in a wide range of temperatures and densities based on the improved T-matrix model. Compared to the stopping power model based on the assumption of small -angle scattering, the improved T-matrix model can consistently take into account the large-angle Coulomb scattering and the resulting transversal deflection of the energetic ions. We investigate the influence of the effect of transversal deflection on the electron-ion energy partition, and propose a fitting formula for the electron energy partition factor, which is suitable for the application in inertial confinement fusion simulation. It is found that the amount of the relative amount of energy deposited into electrons in plasmas will be reduced at most about 27.5% by the effect of transversal deflection. This conclusion suggests that the transversal deflection of energetic ions, induced by the large-angle Coulomb scattering and its cumulative effect, has to be accounted for in accurately simulating the hot-spot ignition and burning of the fuel in inertial confinement fusion.
-
Keywords:
- energy deposition /
- electron-ion energy partition /
- nonideal plasmas /
- inertial confinement fusion
-
[1] 江少恩, 丁永坤, 缪文勇, 刘慎业, 郑志坚, 张保汉, 张继彦, 黄天晅, 李三伟, 陈家斌, 蒋小华, 易荣清, 杨国洪, 杨家敏, 胡昕, 曹柱荣, 黄翼翔2009中国科学(G辑:物理学力学天文学) 391571
[2] Hurricane O A, Patel P K, Betti R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95025005
[3] 朱少平, 罗民兴2024物理53287
[4] Atzeni S, Meyer-ter Vehn J 2004 The physics of inertial fusion: beam plasma interaction, hydrodynamics, hot dense matter, vol. 125(OUP Oxford)
[5] Betti R, Christopherson A, Spears B, Nora R, Bose A, Howard J, Woo K, Edwards M, Sanz J 2015 Phys. Rev. Lett. 114255003
[6] Stanton L G, Murillo M S 2021 Phys. Plasmas 28082301
[7] Lin C, He B, Wu Y, Wang J 2023 Nucl. Fusion 63076018
[8] Eliezer S, Mart´ınez-Val J M 1998 Laser Part. Beams 16581–598
[9] Son S, Fisch N 2006 Phys. Lett. A 35672
[10] Brown L S, Preston D L, Singleton Jr R L 2005 Phys. Rep. 410237
[11] Fraley G S, Linnebur E J, Mason R J, Morse R L 1974 Phys. Fluids 17474
[12] Zylstra A, Hurricane O 2019 Phys. Plasmas 26
[13] Butler S, Buckingham M 1962 Phys. Rev. 1261
[14] Li C K, Petrasso R D 1993 Phys. Rev. Lett. 703059
[15] Brown L S, Preston D L, Singleton Jr R L 2012 Phys. Rev. E 86016406
[16] He B, Wang Z G, Wang J G 2018 Phys. Plasmas 25012704
[17] Zhang Y N, Wang Z G, Zhao Y T, He B 2021 Chin. Phys. B 30015202
[18] Zylstra A B, Rinderknecht H G, Frenje J A, Li C K, Petrasso R D 2019 Phys. Plasmas 26122703
[19] Bernstein D J, Baalrud S D, Daligault J 2019 Phys. Plasmas 26082705
[20] Landau L, Lifshitz E 1960 Classical mechanics (Pergamon Press, Oxford)
[21] Joachain C J 1975 Quantum collision theory (North-Holland Publishing Company)
[22] Lin C, He B, Wu Y, Wang J 2023 Plasma Phys. Control. Fusion 65055005
[23] Zwicknagel G, Toepffer C, Reinhard P G 1999 Phys. Rep. 309117
[24] Bernstein D J, Baalrud S D 2022 Phys. Plasmas 29072705
[25] Lin C, He B, Wu Y, Zou S, Wang J 2023 Nucl. Fusion 63106005
[26] Long K, Tahir N 1986 Nucl. fusion 26555
[27] Gus’ Kov S Y, Il’In D, Sherman V 2013 In EPJ Web of Conferences, vol. 59(EDP Sciences), p 02018
计量
- 文章访问数: 79
- PDF下载量: 5
- 被引次数: 0