Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy deposition and electron-ion energy partition of high-energy ions in dense plasmas

LI Zijian LIN Chengliang WU Yong WANG Jianguo

Citation:

Energy deposition and electron-ion energy partition of high-energy ions in dense plasmas

LI Zijian, LIN Chengliang, WU Yong, WANG Jianguo
cstr: 32037.14.aps.74.20241763
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Energy deposition of high-energy ions and the resulting electron-ion energy partition in dense plasmas are of essential importance in understanding the hot-spot ignition and burning of inertial confinement fusion. In this work, the energy deposition and electron-ion energy partition of high-energy ions are studied in a wide range of temperatures and densities based on the improved T-matrix model. Compared with the stopping power model based on the assumption of small-angle scattering, the improved T-matrix model can consistently take into account the large-angle Coulomb scattering and the resulting transversal deflection of the high-energy ions. We investigate the influence of the effect of transversal deflection on the electron-ion energy partition and propose a fitting formula for the energy partition fraction to plasma electrons. This formula is applicable to inertial confinement fusion simulations. It is found that when the effect of transversal deflection is considered, the relative energy deposited into electrons in plasma is reduced by about 27.5% at most. This conclusion suggests that the transversal deflection of energetic ions, induced by the large-angle Coulomb scattering and its cumulative effect, ought to be considered in accurately simulating the hot-spot ignition and burning of the fuel in inertial confinement fusion.
      Corresponding author: LIN Chengliang, lin_chengliang@iapcm.ac.cn ; WU Yong, wu_yong@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500) and the National Natural Science Foundation of China (Grant Nos. 12474277, U2430208).
    [1]

    江少恩, 丁永坤, 缪文勇, 刘慎业, 郑志坚, 张保汉, 张继彦, 黄天晅, 李三伟, 陈家斌, 蒋小华, 易荣清, 杨国洪, 杨家敏, 胡昕, 曹柱荣, 黄翼翔 2009 中国科学G辑: 物理学 力学 天文学 39 1571

    Jiang S E, Ding Y K, Miu W Y, Liu S Y, Zheng Z J, Zhang B H, Zhang J Y, Huang T X, Li S W, Chen J B, Jiang X H, Yi R Q, Yang G H, Yang J M, Hu X, Cao Z R, Huang Y X 2009 Sci. Chin. Phys., Mech. Astron. 39 1571

    [2]

    Hurricane O A, Patel P K, Betti R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95 025005Google Scholar

    [3]

    朱少平, 罗民兴 2024 物理 53 287Google Scholar

    Zhu S P, Luo M X 2024 Physics 53 287Google Scholar

    [4]

    Atzeni S, Meyer-ter Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Vol. 125) (Oxford: Oxford University Press

    [5]

    Betti R, Christopherson A, Spears B, Nora R, Bose A, Howard J, Woo K, Edwards M, Sanz J 2015 Phys. Rev. Lett. 114 255003Google Scholar

    [6]

    Stanton L G, Murillo M S 2021 Phys. Plasmas 28 082301Google Scholar

    [7]

    Lin C, He B, Wu Y, Wang J 2023 Nucl. Fusion 63 076018Google Scholar

    [8]

    Eliezer S, Martínez-Val J M 1998 Laser Part. Beams 16 581Google Scholar

    [9]

    Son S, Fisch N 2006 Phys. Lett. A 356 72Google Scholar

    [10]

    Brown L S, Preston D L, Singleton Jr R L 2005 Phys. Rep. 410 237Google Scholar

    [11]

    Fraley G S, Linnebur E J, Mason R J, Morse R L 1974 Phys. Fluids 17 474Google Scholar

    [12]

    Zylstra A, Hurricane O 2019 Phys. Plasmas 26 062701Google Scholar

    [13]

    Butler S, Buckingham M 1962 Phys. Rev. 126 1Google Scholar

    [14]

    Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar

    [15]

    Brown L S, Preston D L, Singleton Jr R L 2012 Phys. Rev. E 86 016406Google Scholar

    [16]

    He B, Wang Z G, Wang J G 2018 Phys. Plasmas 25 012704Google Scholar

    [17]

    Zhang Y N, Wang Z G, Zhao Y T, He B 2021 Chin. Phys. B 30 015202Google Scholar

    [18]

    Zylstra A B, Rinderknecht H G, Frenje J A, Li C K, Petrasso R D 2019 Phys. Plasmas 26 122703Google Scholar

    [19]

    Bernstein D J, Baalrud S D, Daligault J 2019 Phys. Plasmas 26 082705Google Scholar

    [20]

    Landau L, Lifshitz E 1977 Quantum Mechanics: Non-Relativistic Theory, Chapter XVII (Oxford: Pergamon Press

    [21]

    Joachain C J 1975 Quantum Collision Theory, Chapter 4 (North-Holland Publishing Company

    [22]

    Lin C, He B, Wu Y, Wang J 2023 Plasma Phys. Control. Fusion 65 055005Google Scholar

    [23]

    Zwicknagel G, Toepffer C, Reinhard P G 1999 Phys. Rep. 309 117Google Scholar

    [24]

    Bernstein D J, Baalrud S D 2022 Phys. Plasmas 29 072705Google Scholar

    [25]

    Lin C, He B, Wu Y, Zou S, Wang J 2023 Nucl. Fusion 63 106005Google Scholar

    [26]

    Long K, Tahir N 1986 Nucl. fusion 26 555Google Scholar

    [27]

    Gus’Kov S Y, Il’In D, Sherman V 2013 EPJ Web of Conferences 59 02018Google Scholar

  • 图 1  (a)温度为$ 200 \; \mathrm{keV} $和电子密度为$ 10^{25} \; \mathrm{cm^{-3}} $的DT等离子体中, 不同类型的等离子体粒子对能量为$ E_0 = $$ 3.54 \; \mathrm{MeV} $的α粒子CSD阻止本领的贡献; (b)电子密度为$ 10^{25} \; \mathrm{cm^{-3}} $的DT等离子体中, 不同阻止本领为0时α粒子的速度, 红色虚线对应能量为$ E_\mathrm{min} = 3 k_\mathrm{B} T / 2 $时α粒子的速度

    Figure 1.  (a) Partial and total CSD stopping power of α particle with $ E_0 = 3.54 \; \mathrm{MeV} $ in a DT plasma with $ T = $$ 200 \; \mathrm{keV} $ and $ n_\mathrm{e} = 10^{25} \; \mathrm{cm^{-3}} $; (b) the characteristic velocity of α particle for the case of partial and total stopping power equal to 0 in DT plasmas with $ n_\mathrm{e} = $$ 10^{25} \; \mathrm{cm^{-3}} $. The red dash line represents the velocity of α particle when $ E_\alpha = E_\mathrm{min} = 3 k_\mathrm{B} T / 2 $.

    图 2  电子密度为$ 10^{26} \; \mathrm{cm^{-3}} $的DT与$ \mathrm{p}^{11}\mathrm{B} $等离子体中的电子能量分配因子. 方形和三角形符号分别对应$ \mathrm{p}^{11}\mathrm{B} $等离子体中CSD和BPS模型计算的结果, 而圆形和五边形分别对应DT等离子体中CSD和BPS模型计算的结果

    Figure 2.  Energy partition of electrons in DT and $ \mathrm{p}^{11}\mathrm{B} $ plasmas at a fixed electron density $ 10^{26} \; \mathrm{cm^{-3}} $. The square and triangle symbols displays the predictions from CSD and BPS stopping power for $ \mathrm{p}^{11}\mathrm{B} $ plasmas, while the circles and pentagons correspond to CSD and BPS results for DT plasmas.

    图 3  α粒子在电子密度$ 10^{26} \; \mathrm{cm^{-3}} $, 温度为1 keV的DT等离子体中的CSD$ ({\rm{d}}E/{\rm{d}}s) $和LET$ ({\rm{d}}E/{\rm{d}}x) $阻止本领

    Figure 3.  CSD and LET stopping power for α particle in a DT plasma with $ n_\mathrm{e} = 10^{26} \; \mathrm{cm^{-3}} $ and $ T_\mathrm{e} = 1 \; \mathrm{keV} $.

    图 4  左轴: 电子密度为$ 10^{26} \; \mathrm{cm^{-3}} $的DT等离子体中, 电子能量分配因子$ F_\mathrm{e} $随温度的变化. 方形和圆形分别对应Li-Petrasso模型[14]和BPS模型[10]的结果, 而五角星和三角符号表示不考虑和考虑入射粒子反冲效应的结果[16]. BPS$ (E_0) $和BPS$ (E_\mathrm{dep}) $分别表示$ E_\mathrm{min} = 0, \; 3 k_\mathrm{B} T / 2 $对应的结果. CSD (蓝色点虚线)和LET (红色实线)之间的差异表征偏转效应的贡献. 黑色虚线对应方程(2)中取$ T_0 = 25 $的结果. 右轴: LET和CSD阻止本领对应的电子能量分配因子之间的比值

    Figure 4.  Left axis: energy partition of electron $ F_\mathrm{e} $ in DT plasmas with $ n_\mathrm{e} = 10^{26} \; \mathrm{cm^{-3}} $ at different temperatures. Square and circle symbols denotes the results of Li-Petrasso[14] and BPS[10] models, while pentagram and triangle symbols represent the results without and with projectile recoil based on dielectric formalism of stopping power[16]. BPS$ (E_0) $ and BPS$ (E_\mathrm{dep}) $ are predictions with $ E_\mathrm{min} = $$ 0, \; 3 k_\mathrm{B} T / 2 $, respectively. The difference between LET (red solid line) and CSD (blue dotted-dash line) describes the influence of deflection effect. The black dash line displays the results calculated with $ T_0 = 25 $ in Eq. (2). Right axis: the ratio of energy partition $ F_\mathrm{e} $ from LET and CSD stopping power.

    图 5  (a)电子密度为$ 10^{26} \; \mathrm{cm^{-3}} $的DT等离子体中, 基于CSD阻止本领计算的电子能量分配因子$ F_\mathrm{e} $及其拟合; (b) CSD模型中, 电子能量分配因子$ F_\mathrm{e} $拟合参数$ a_i $随密度的变化及其拟合

    Figure 5.  (a) Fitting for energy partition of electron $ F_\mathrm{e} $ based on the CSD stopping power in a DT plasma with $ n_\mathrm{e} = 10^{26} \; \mathrm{cm^{-3}} $; (b) the corresponding fitting parameters $ a_i $ for the CSD $ F_\mathrm{e} $.

    表 1  基于CSD和BPS阻止本领的电子能量分配因子$ F_\mathrm{e} $的拟合参数, 见方程(18)和方程(19). 其中符号$ x(y) $表示$ x\times 10^y $   

    Table 1.  Fitting parameters in Eqs. (18) and (19) for $ F_\mathrm{e} $ based on CSD and BPS stopping power. The symbol $ x(y) $ means $ x\times 10^y $.

    模型 CSD BPS
    $ b_i^0 $ $ b_i^1 $ $ b_i^2 $ $ b_i^0 $ $ b_i^1 $ $ b_i^2 $
    $ a_1 $ $ -4.3914(1) $ $ 9.9935(0) $ $ -2.7411(-1) $ $ 1.4686(1) $ $ 5.0738(0) $ $ -1.6737(-1) $
    $ a_2 $ $ -2.0193(-1) $ $ 1.0276(-1) $ $ -2.2237(-3) $ $ 3.2581(-1) $ $ 5.9071(-2) $ $ -1.3240(-3) $
    $ a_3 $ $ 3.6309(-3) $ $ -2.9969(-4) $ $ 7.5755(-6) $ $ 8.6989(-4) $ $ -5.5310(-5) $ $ 2.1109(-6) $
    $ a_4 $ $ 1.5664(0) $ $ 2.5995(-2) $ $ -5.9935(-4) $ $ 1.6985(0) $ $ 1.3887(-2) $ $ -3.4874(-4) $
    $ a_5 $ $ 5.7808(-1) $ $ 5.6886(-2) $ $ -1.3692(-3) $ $ 1.0067(0) $ $ 1.9037(-2) $ $ -5.4891(-4) $
    DownLoad: CSV
    Baidu
  • [1]

    江少恩, 丁永坤, 缪文勇, 刘慎业, 郑志坚, 张保汉, 张继彦, 黄天晅, 李三伟, 陈家斌, 蒋小华, 易荣清, 杨国洪, 杨家敏, 胡昕, 曹柱荣, 黄翼翔 2009 中国科学G辑: 物理学 力学 天文学 39 1571

    Jiang S E, Ding Y K, Miu W Y, Liu S Y, Zheng Z J, Zhang B H, Zhang J Y, Huang T X, Li S W, Chen J B, Jiang X H, Yi R Q, Yang G H, Yang J M, Hu X, Cao Z R, Huang Y X 2009 Sci. Chin. Phys., Mech. Astron. 39 1571

    [2]

    Hurricane O A, Patel P K, Betti R, Froula D H, Regan S P, Slutz S A, Gomez M R, Sweeney M A 2023 Rev. Mod. Phys. 95 025005Google Scholar

    [3]

    朱少平, 罗民兴 2024 物理 53 287Google Scholar

    Zhu S P, Luo M X 2024 Physics 53 287Google Scholar

    [4]

    Atzeni S, Meyer-ter Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Vol. 125) (Oxford: Oxford University Press

    [5]

    Betti R, Christopherson A, Spears B, Nora R, Bose A, Howard J, Woo K, Edwards M, Sanz J 2015 Phys. Rev. Lett. 114 255003Google Scholar

    [6]

    Stanton L G, Murillo M S 2021 Phys. Plasmas 28 082301Google Scholar

    [7]

    Lin C, He B, Wu Y, Wang J 2023 Nucl. Fusion 63 076018Google Scholar

    [8]

    Eliezer S, Martínez-Val J M 1998 Laser Part. Beams 16 581Google Scholar

    [9]

    Son S, Fisch N 2006 Phys. Lett. A 356 72Google Scholar

    [10]

    Brown L S, Preston D L, Singleton Jr R L 2005 Phys. Rep. 410 237Google Scholar

    [11]

    Fraley G S, Linnebur E J, Mason R J, Morse R L 1974 Phys. Fluids 17 474Google Scholar

    [12]

    Zylstra A, Hurricane O 2019 Phys. Plasmas 26 062701Google Scholar

    [13]

    Butler S, Buckingham M 1962 Phys. Rev. 126 1Google Scholar

    [14]

    Li C K, Petrasso R D 1993 Phys. Rev. Lett. 70 3059Google Scholar

    [15]

    Brown L S, Preston D L, Singleton Jr R L 2012 Phys. Rev. E 86 016406Google Scholar

    [16]

    He B, Wang Z G, Wang J G 2018 Phys. Plasmas 25 012704Google Scholar

    [17]

    Zhang Y N, Wang Z G, Zhao Y T, He B 2021 Chin. Phys. B 30 015202Google Scholar

    [18]

    Zylstra A B, Rinderknecht H G, Frenje J A, Li C K, Petrasso R D 2019 Phys. Plasmas 26 122703Google Scholar

    [19]

    Bernstein D J, Baalrud S D, Daligault J 2019 Phys. Plasmas 26 082705Google Scholar

    [20]

    Landau L, Lifshitz E 1977 Quantum Mechanics: Non-Relativistic Theory, Chapter XVII (Oxford: Pergamon Press

    [21]

    Joachain C J 1975 Quantum Collision Theory, Chapter 4 (North-Holland Publishing Company

    [22]

    Lin C, He B, Wu Y, Wang J 2023 Plasma Phys. Control. Fusion 65 055005Google Scholar

    [23]

    Zwicknagel G, Toepffer C, Reinhard P G 1999 Phys. Rep. 309 117Google Scholar

    [24]

    Bernstein D J, Baalrud S D 2022 Phys. Plasmas 29 072705Google Scholar

    [25]

    Lin C, He B, Wu Y, Zou S, Wang J 2023 Nucl. Fusion 63 106005Google Scholar

    [26]

    Long K, Tahir N 1986 Nucl. fusion 26 555Google Scholar

    [27]

    Gus’Kov S Y, Il’In D, Sherman V 2013 EPJ Web of Conferences 59 02018Google Scholar

  • [1] TANG Qi, LIU Pinyang, SONG Zifeng, CHEN Bolun, LIU Zhongjie, YANG Jiamin. A method for calculating the temporal and spatial distribution of ion temperature in hot spots of one-dimensional implosions based on multi-diagnostic parameter analysis. Acta Physica Sinica, 2025, 74(10): . doi: 10.7498/aps.74.20250018
    [2] He Min-Qing, Zhang Hua, Li Ming-Qiang, Peng Li, Zhou Cang-Tao. Proton beam energy deposition in fast ignition and production of protons on Shenguang II upgraded device. Acta Physica Sinica, 2023, 72(9): 095201. doi: 10.7498/aps.72.20222005
    [3] Zhou Bin, Yu Quan-Zhi, Hu Zhi-Liang, Chen Liang, Zhang Xue-Ying, Liang Tian-Jiao. Calculation and verification for energetic proton energy deposition in spallation target. Acta Physica Sinica, 2021, 70(5): 052401. doi: 10.7498/aps.70.20201504
    [4] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [5] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [6] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [7] Ning Cheng, Feng Zhi-Xing, Xue Chuang. Basic characteristics of kinetic energy transfer in the dynamic hohlraums of Z-pinch. Acta Physica Sinica, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [8] Shi Huan-Tong, Zou Xiao-Bing, Zhao Shen, Zhu Xin-Lei, Wang Xin-Xin. Numerical simulation of energy deposition improvment in electrical wire explosion using a parallel wire. Acta Physica Sinica, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [9] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [10] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [11] Yan Ji, Zheng Jian-Hua, Chen Li, Lin Zhi-Wei, Jiang Shao-En. The application of phase contrast imaging to implosion capsule diagnose in high energy density physics environment. Acta Physica Sinica, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [12] Liu La-Qun, Liu Da-Gang, Wang Xue-Qiong, Yang Chao, Xia Meng-Zhong, Peng Kai. The numerical simulation of the electronic energy deposition and temperature variation in post-hole convolute of magnetically insulated transmission lines. Acta Physica Sinica, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [13] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [15] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [16] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [17] Fang Mei-Hua, Wei Zhi-Yong, Yang Hao, Cheng Jin-Xing. Nuclear reaction stopping of 400MeV/nucleon 56Fe in water. Acta Physica Sinica, 2008, 57(10): 6196-6201. doi: 10.7498/aps.57.6196
    [18] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [19] Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma. Acta Physica Sinica, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [20] Ren Li-Ming, Chen Bao-Qin, Tan Zhen-Yu. . Acta Physica Sinica, 2002, 51(3): 512-518. doi: 10.7498/aps.51.512
Metrics
  • Abstract views:  434
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  24 December 2024
  • Accepted Date:  26 February 2025
  • Available Online:  07 March 2025
  • Published Online:  05 May 2025

/

返回文章
返回
Baidu
map