Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microstructure study of YBa2Cu3O7-δ thin film with synchrotron-based three-dimensional reciprocal space mapping

Yi Qi-Ru Xiong Pei-Yu Wang Huan-Hua Li Gang Wang Yun-Kai Dong En-Yang Chen Yu Shen Zhi-Bang Wu Yun Yuan Jie Jin Kui Gao Chen

Citation:

Microstructure study of YBa2Cu3O7-δ thin film with synchrotron-based three-dimensional reciprocal space mapping

Yi Qi-Ru, Xiong Pei-Yu, Wang Huan-Hua, Li Gang, Wang Yun-Kai, Dong En-Yang, Chen Yu, Shen Zhi-Bang, Wu Yun, Yuan Jie, Jin Kui, Gao Chen
PDF
HTML
Get Citation
  • High-temperature superconducting films can be used for fabricating the cutting-edge high-temperature superconducting microwave devices because of their low microwave surface resistances. However, the microwave surface resistances of high-temperature superconducting materials are particularly sensitive to microstructure due to their special two-dimensional superconducting mechanisms and extremely short superconducting coherence lengths. To investigate the correlations between microstructure and microwave surface resistance of high-temperature superconducting materials, YBa2Cu3O7-δ (YBCO) films with different thickness are grown on (00l)-oriented MgO single-crystal substrates by using the pulsed laser deposition (PLD) technique. Electrical measurements reveal that their superconducting transition temperatures and room temperature resistances do not show significant difference. However, their microwave surface resistances in superconducting state display a significant difference. The characterizations of the microstructures of YBCO films by synchrotron radiation three-dimensional reciprocal space mapping(3D-RSM) technique show that the number of the grains with CuO2 face parallel to the surface (c crystals), and the consistency of grain orientation are the main causes for the difference in microwave surface resistance.
      Corresponding author: Gao Chen, gaochen@ucas.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China(Grant No. 2022YFA1603900), the Fundamental Research Funds for the Central Universities (Grant No. E1E40207X2) and UCAS (Grant Nos. E1EG0210X2, 118900M018)
    [1]

    Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607Google Scholar

    [2]

    Zhu S N, Zhu Y Y, Zhang Z Y, Shu H, Wang H F, Hong J F, Ge C Z 1995 J. Appl. Phys. 77 5481Google Scholar

    [3]

    Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843Google Scholar

    [4]

    Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [5]

    Wei D Z, Wang C W, Wang H J, Hu X P, Wei D, Fang X Y, Zhang Y, Wu D, Hu Y L, Li J W, Zhu S N, Xiao M 2018 Nat. Photonics 12 596Google Scholar

    [6]

    Xu T X, Switkowski K, Chen X, Liu S, Koynov K, Yu H H, Zhang H J, Wang J Y, Sheng Y, Krolikowski W 2018 Nat. Photonics 12 591Google Scholar

    [7]

    Wei D Z, Wang C W, Xu X Y, Wang H J, Hu Y L, Chen P C, Li J W, Zhu Y Z, Xin C, Hu X P, Zhang Y, Wu D, Chu J R, Zhu S N, Xiao M 2019 Nat. Commun. 10 1Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [10]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [11]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412

    [12]

    Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, Kwok W K 1990 Phys. Rev. B 41 1863Google Scholar

    [13]

    Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar

    [14]

    Foltyn S R, Civale L, Macmanus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631Google Scholar

    [15]

    Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [16]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar

    [17]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827

    [18]

    Newman N, Lyons W G 1993 J. Supercond. 6 119Google Scholar

    [19]

    孙亮, 黎红, 张雪强, 李春光, 张强, 王佳, 边勇波, 何豫生 2012 中国科学: 物理学 力学 天文学 42 767Google Scholar

    Sun L, Li H, Zhang X Q, Li C G, Zhang Q, Wang J, Bian Y B, He Y S 2012 Sci. Sin-Phys. Mech. Astron 42 767Google Scholar

    [20]

    Bian Y B, Guo J, Gao C Z, Li C G, Li H, Wang B C, He X F, Li C, Li N, Li G Q, Zhang Q, Zhang X Q, Meng J B, He Y S 2010 Physica C 470 617Google Scholar

    [21]

    He X F, Zhang X Q, Wang Y H, Gao L, Wang J, Cui B, Bian Y B, Yu Tao, Zhang Q, Li H, Li C G, Li J J, Gu C Z, He Y S 2009 Physica C 469 1925Google Scholar

    [22]

    Fuchs D, Brecht E, Schweiss P, Loa I, Thomsen C, Schneider R 1997 Physica C 280 167Google Scholar

    [23]

    邹春梅, 左长明, 路胜博, 催旭梅, 姬洪 2007 功能材料与器件学报 13 301Google Scholar

    ZOU C M, ZOU C M, Lu S B, Cui X M, Ji H 2007 J. Funt. Mater. Dev. 13 301Google Scholar

    [24]

    Shi D Q, Ko K R, Song K J, Chung J K, Choi S J, Park Y M, Shin K C, Yoo S I, Park C 2004 Supercond. Sci. Technol. 17 S42Google Scholar

    [25]

    Li X, Rupich M W, Kodenkandath T, Huang Y 2007 IEEE Trans. Appl. Supercond. 17 3553Google Scholar

    [26]

    Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F 1999 Appl. Phys. Lett. 75 3692Google Scholar

    [27]

    Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J, Fleshler S 2013 IEEE Trans. Appl. Supercond. 23 6601205Google Scholar

    [28]

    Jia Q X, Foltyn S R, Arendt P N, Smith J F 2002 Appl. Phys. Lett. 80 1601Google Scholar

    [29]

    Eom C B, Marshall A F, Suzuki Y, Geballe T H 1992 Phys. Rev. B 46 11902Google Scholar

    [30]

    Mastuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y 2004 J. Mater. Res. 19 2674Google Scholar

    [31]

    Tang C Y, Cai Y Q, Yao X, Rao Q L, Tao B W, Li Y R 2007 J. Phys. :Condens. Matter 19 076203Google Scholar

    [32]

    Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J, Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405Google Scholar

    [33]

    Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E, Lovejoy T C 2019 Ultramicroscopy 203 60Google Scholar

    [34]

    Wang Y, Qiu L, Zhang L L, Tang D M, Ma R X, Wang Y Z, Zhang B S, Ding F, Liu C, Cheng H M 2020 ACS Nano. 14 16823Google Scholar

    [35]

    Zheng H, Cao F, Zhao L G, Jiang R H, Zhao P L, Zhang Y, Wei Y J, Meng S, Li K X, Jia S F, Li L Y, Wang J B 2019 Microscopy 68 423

    [36]

    Tang M, Yuan W T, Ou Y, Li G X, You R Y, Li S D, Yang H S, Zhang Z, Wang Y 2020 ACS Catal. 10 14419Google Scholar

    [37]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Appl. Phys. Lett. 40 178Google Scholar

    [38]

    Binning G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar

    [39]

    Song B, Zhao S, Shen W, Collings C, Ding S Y 2020 Front. Plant Sci. 11 479Google Scholar

    [40]

    Beekman C, Siemons W, Ward T Z, Chi M, Howe J, Biegalski M D, Balke N, Maksymovych P, Farrar A K, Romero J B, Gao P, Pan X Q, Tenne D A, Christen H M 2013 Adv. Mater. 25 5561Google Scholar

    [41]

    Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977Google Scholar

    [42]

    Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L, Chen L 2011 Phys. Rev. B 84 094116Google Scholar

    [43]

    Chen Z H, Luo Z L, Huang C W, Qi Y J, Yang P, You L, Hu C S, Wu T, Wang J L, Gao C, Sritharan T, Chen L 2011 Adv. Funct. Mater. 21 133Google Scholar

    [44]

    Luo Z, Chen Z, Yang Y, Liu H J, Huang C, Huang H, Wang H, Yang M M, Hu C, Pan G, Wen W, Li X, He Q, Sritharan T, Chu Y H, Chen L, Gao C 2013 Phys. Rev. B 88 064103Google Scholar

    [45]

    Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [48]

    Mariager S O, Schlepütz C M, Aagesen M, Sørensen C B, Johnson E, Willmott P R, Feidenhans’l R 2009 Phys. Status Solidi A 206 1771Google Scholar

    [49]

    Cornelius T W, Carbone D, Jacques V L R, Schülli T U, Metzger T H 2011 J. Synchrotron Radiat. 18 413Google Scholar

    [50]

    Cornelius T W, Davydok A, Jacques V L R, Grifone R, Schülli T, Richard M I, Beutier G, Verdier M, Metzger T H, Pietsch U, Thomas O 2012 J. Synchrotron Radiat. 19 688Google Scholar

    [51]

    Luo Z L, Huang H, Zhou H, Chen Z H, Yang Y, Wu L, Zhu C, Wang H, Yang M, Hu S, Wen H, Zhang X, Zhang Z, Chen L, Fong D D, Gao C 2014 Appl. Phys. Lett. 104 182901Google Scholar

    [52]

    Xu H, Chen Z H, Zhang X Y, Dong Y Q, Hong B, Zhao J T, Chen L, Das S, Gao C, Zeng C G, Wen H D, Luo Z L 2019 AIP Adv. 9 205114

    [53]

    Wang R X, Xu H, Yang B, Luo Z L, Sun E W, Zhao J T, Zheng L M, Dong Y Q, Zhou H, Yang R, Gao C, Cao W W 2016 Appl. Phys. Lett. 108 152905Google Scholar

    [54]

    Yang L F, Zhao Y G, Zhang S, Li P S, Gao Y, Yang Y J, Huang H L, Miao P X, Liu Y, Chen A T, Nan C W, Gao C 2014 Sci. Rep. 4 4591Google Scholar

    [55]

    Sridhar S, Kennedy W L 1988 Rev. Sci. Instrum. 59 531Google Scholar

    [56]

    Barannik A A, Cherpak N T, He Y, Sun L, Zhang X, Vovnyuk M V, Wu Y 2018 Low Temp. Phys. 44 247Google Scholar

    [57]

    Wong-Ng W, McMurdie H F, Paretzkin B, Zhang Y M, Davis K L, Hubbard C R, Dragoo A L, Stewart J M 1987 Powder Diffr. 2 3

  • 图 1  3D-RSM衍射几何的示意图

    Figure 1.  Schematic diagram of 3D-RSM.

    图 2  1#样品和2#样品 (a)直流电阻R和(b)微波表面电阻Rs对温度的依赖关系

    Figure 2.  Dependence of (a) DC resistance R and (b) microwave surface resistance Rs on temperature for sample 1# and sample 2#.

    图 3  (a) 1#样品和(b)2#样品(108)衍射峰的3D-RSM; (c) 1#样品和(d)2#样品(108)衍射峰3D-RSM在水平面上的投影

    Figure 3.  (a) 3D-RSM of (108) diffraction peaks for sample 1#, and (b) sample 2#; (c) projection of (108) 3D-RSM of sample 1#, and (d) sample 2# on the horizontal plane.

    图 4  (a) 1#样品和(b) 2#样品(200)衍射峰的3D-RSM

    Figure 4.  3D-RSM of (a) sample #1, and (b) sample #2 around the (200) diffraction peak.

    图 5  (a) 1#样品和(b) 2#样品(109)衍射峰的3D-RSM, 图中同时画出了(108)的3D-RSM; (c)和(d)是(a)和(b)在45º方向的垂直截面

    Figure 5.  (a) 3D-RSM of sample 1#, and (b) sample 2# around the (109) diffraction peak, while 3D-RSM of the diffraction peak of (108) are plotted in the figure; (c) and (d) are vertical cross sections of (a) and (b) in the 45º direction.

    表 1  YBCO(108), (018), (109), (019), (130)衍射峰的相对强度

    Table 1.  Relative intensities of YBCO (108), (018), (109), (019), (130) diffraction peaks.

    衍射峰实测三维积分强度
    (108)(018)(109)(019)(130)
    卡片上的相对强度13 56 4 5
    YBCO 400 nm$ 9.136\times {10}^{6} $$ 5.974\times {10}^{6} $
    YBCO 1000 nm$ 11.503\times {10}^{6} $$ 7.769\times {10}^{6} $
    DownLoad: CSV

    表 2  由(109), (019), (130)衍射峰的强度计算出的c晶/b晶比

    Table 2.  The c-crystal to b-crystal ratio calculated from the intensities of the (109), (019), and (130) diffraction peaks.

    样品厚度衍射峰三维积分强度c晶/b晶比
    (109), (019)(130)
    YBCO 400 nm$ 1.015\times {10}^{6} $$ 0.180\times {10}^{6} $5.639∶1
    YBCO 1000 nm$ 1.278\times {10}^{6} $$ 0.276\times {10}^{6} $4.630∶1
    DownLoad: CSV
    Baidu
  • [1]

    Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z, Wang Y N 1980 Appl. Phys. Lett. 37 607Google Scholar

    [2]

    Zhu S N, Zhu Y Y, Zhang Z Y, Shu H, Wang H F, Hong J F, Ge C Z 1995 J. Appl. Phys. 77 5481Google Scholar

    [3]

    Zhu S N, Zhu Y Y, Ming N B 1997 Science 278 843Google Scholar

    [4]

    Jin H, Liu F M, Xu P, Xia J L, Zhong M L, Yuan Y, Zhou J W, Gong Y X, Wang W, Zhu S N 2014 Phys. Rev. Lett. 113 103601Google Scholar

    [5]

    Wei D Z, Wang C W, Wang H J, Hu X P, Wei D, Fang X Y, Zhang Y, Wu D, Hu Y L, Li J W, Zhu S N, Xiao M 2018 Nat. Photonics 12 596Google Scholar

    [6]

    Xu T X, Switkowski K, Chen X, Liu S, Koynov K, Yu H H, Zhang H J, Wang J Y, Sheng Y, Krolikowski W 2018 Nat. Photonics 12 591Google Scholar

    [7]

    Wei D Z, Wang C W, Xu X Y, Wang H J, Hu Y L, Chen P C, Li J W, Zhu Y Z, Xin C, Hu X P, Zhang Y, Wu D, Chu J R, Zhu S N, Xiao M 2019 Nat. Commun. 10 1Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Li P, Zhai J W, Shen B, Zhang S J, Li X L, Zhu F Y, Zhang X M 2018 Adv. Mater. 30 1705171Google Scholar

    [10]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [11]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 6 412

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 6 412

    [12]

    Jorgensen J D, Veal B W, Paulikas A P, Nowicki L J, Crabtree G W, Claus H, Kwok W K 1990 Phys. Rev. B 41 1863Google Scholar

    [13]

    Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar

    [14]

    Foltyn S R, Civale L, Macmanus-Driscoll J L, Jia Q X, Maiorov B, Wang H, Maley M 2007 Nat. Mater. 6 631Google Scholar

    [15]

    Obradors X, Puig T 2014 Supercond. Sci. Technol. 27 044003Google Scholar

    [16]

    Larbalestier D, Gurevich A, Feldmann D M, Polyanskii A 2001 Nature 414 368Google Scholar

    [17]

    蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2018 科学通报 64 827

    Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2018 Chin. Sci. Bull. 64 827

    [18]

    Newman N, Lyons W G 1993 J. Supercond. 6 119Google Scholar

    [19]

    孙亮, 黎红, 张雪强, 李春光, 张强, 王佳, 边勇波, 何豫生 2012 中国科学: 物理学 力学 天文学 42 767Google Scholar

    Sun L, Li H, Zhang X Q, Li C G, Zhang Q, Wang J, Bian Y B, He Y S 2012 Sci. Sin-Phys. Mech. Astron 42 767Google Scholar

    [20]

    Bian Y B, Guo J, Gao C Z, Li C G, Li H, Wang B C, He X F, Li C, Li N, Li G Q, Zhang Q, Zhang X Q, Meng J B, He Y S 2010 Physica C 470 617Google Scholar

    [21]

    He X F, Zhang X Q, Wang Y H, Gao L, Wang J, Cui B, Bian Y B, Yu Tao, Zhang Q, Li H, Li C G, Li J J, Gu C Z, He Y S 2009 Physica C 469 1925Google Scholar

    [22]

    Fuchs D, Brecht E, Schweiss P, Loa I, Thomsen C, Schneider R 1997 Physica C 280 167Google Scholar

    [23]

    邹春梅, 左长明, 路胜博, 催旭梅, 姬洪 2007 功能材料与器件学报 13 301Google Scholar

    ZOU C M, ZOU C M, Lu S B, Cui X M, Ji H 2007 J. Funt. Mater. Dev. 13 301Google Scholar

    [24]

    Shi D Q, Ko K R, Song K J, Chung J K, Choi S J, Park Y M, Shin K C, Yoo S I, Park C 2004 Supercond. Sci. Technol. 17 S42Google Scholar

    [25]

    Li X, Rupich M W, Kodenkandath T, Huang Y 2007 IEEE Trans. Appl. Supercond. 17 3553Google Scholar

    [26]

    Foltyn S R, Jia Q X, Arendt P N, Kinder L, Fan Y, Smith J F 1999 Appl. Phys. Lett. 75 3692Google Scholar

    [27]

    Rupich M W, Li X P, Sathyamurthy S, Thieme C L H, DeMoranville K, Gannon J, Fleshler S 2013 IEEE Trans. Appl. Supercond. 23 6601205Google Scholar

    [28]

    Jia Q X, Foltyn S R, Arendt P N, Smith J F 2002 Appl. Phys. Lett. 80 1601Google Scholar

    [29]

    Eom C B, Marshall A F, Suzuki Y, Geballe T H 1992 Phys. Rev. B 46 11902Google Scholar

    [30]

    Mastuda J S, Oba F, Murata T, Yamamoto T, Ikuhara Y 2004 J. Mater. Res. 19 2674Google Scholar

    [31]

    Tang C Y, Cai Y Q, Yao X, Rao Q L, Tao B W, Li Y R 2007 J. Phys. :Condens. Matter 19 076203Google Scholar

    [32]

    Wang X, Cai Y Q, Yao X, Wan W, Li F H, Xiong J, Tao B W 2008 J. Phys. D: Appl. Phys. 41 165405Google Scholar

    [33]

    Krivanek O L, Dellby N, Hachtel J A, Idrobo J C, Hotz M T, Plotkin-Swing B, Bacon N J, Bleloch A L, Corbin G J, Hoffman M V, Meyer C E, Lovejoy T C 2019 Ultramicroscopy 203 60Google Scholar

    [34]

    Wang Y, Qiu L, Zhang L L, Tang D M, Ma R X, Wang Y Z, Zhang B S, Ding F, Liu C, Cheng H M 2020 ACS Nano. 14 16823Google Scholar

    [35]

    Zheng H, Cao F, Zhao L G, Jiang R H, Zhao P L, Zhang Y, Wei Y J, Meng S, Li K X, Jia S F, Li L Y, Wang J B 2019 Microscopy 68 423

    [36]

    Tang M, Yuan W T, Ou Y, Li G X, You R Y, Li S D, Yang H S, Zhang Z, Wang Y 2020 ACS Catal. 10 14419Google Scholar

    [37]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Appl. Phys. Lett. 40 178Google Scholar

    [38]

    Binning G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930Google Scholar

    [39]

    Song B, Zhao S, Shen W, Collings C, Ding S Y 2020 Front. Plant Sci. 11 479Google Scholar

    [40]

    Beekman C, Siemons W, Ward T Z, Chi M, Howe J, Biegalski M D, Balke N, Maksymovych P, Farrar A K, Romero J B, Gao P, Pan X Q, Tenne D A, Christen H M 2013 Adv. Mater. 25 5561Google Scholar

    [41]

    Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W, Ramesh R 2009 Science 326 977Google Scholar

    [42]

    Chen Z H, Prosandeev S, Luo Z L, Ren W, Qi Y J, Huang C W, You L, Gao C, Kornev I A, Wu T, Wang J L, Yang P, Sritharan T, Bellaiche L, Chen L 2011 Phys. Rev. B 84 094116Google Scholar

    [43]

    Chen Z H, Luo Z L, Huang C W, Qi Y J, Yang P, You L, Hu C S, Wu T, Wang J L, Gao C, Sritharan T, Chen L 2011 Adv. Funct. Mater. 21 133Google Scholar

    [44]

    Luo Z, Chen Z, Yang Y, Liu H J, Huang C, Huang H, Wang H, Yang M M, Hu C, Pan G, Wen W, Li X, He Q, Sritharan T, Chu Y H, Chen L, Gao C 2013 Phys. Rev. B 88 064103Google Scholar

    [45]

    Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69Google Scholar

    [46]

    Li Y L, Hu S Y, Liu Z K, Chen L Q 2002 Acta Mater. 50 395Google Scholar

    [47]

    Xu G, Zhong Z, Hiraka H, Shirane G 2004 Phys. Rev. B 70 174109Google Scholar

    [48]

    Mariager S O, Schlepütz C M, Aagesen M, Sørensen C B, Johnson E, Willmott P R, Feidenhans’l R 2009 Phys. Status Solidi A 206 1771Google Scholar

    [49]

    Cornelius T W, Carbone D, Jacques V L R, Schülli T U, Metzger T H 2011 J. Synchrotron Radiat. 18 413Google Scholar

    [50]

    Cornelius T W, Davydok A, Jacques V L R, Grifone R, Schülli T, Richard M I, Beutier G, Verdier M, Metzger T H, Pietsch U, Thomas O 2012 J. Synchrotron Radiat. 19 688Google Scholar

    [51]

    Luo Z L, Huang H, Zhou H, Chen Z H, Yang Y, Wu L, Zhu C, Wang H, Yang M, Hu S, Wen H, Zhang X, Zhang Z, Chen L, Fong D D, Gao C 2014 Appl. Phys. Lett. 104 182901Google Scholar

    [52]

    Xu H, Chen Z H, Zhang X Y, Dong Y Q, Hong B, Zhao J T, Chen L, Das S, Gao C, Zeng C G, Wen H D, Luo Z L 2019 AIP Adv. 9 205114

    [53]

    Wang R X, Xu H, Yang B, Luo Z L, Sun E W, Zhao J T, Zheng L M, Dong Y Q, Zhou H, Yang R, Gao C, Cao W W 2016 Appl. Phys. Lett. 108 152905Google Scholar

    [54]

    Yang L F, Zhao Y G, Zhang S, Li P S, Gao Y, Yang Y J, Huang H L, Miao P X, Liu Y, Chen A T, Nan C W, Gao C 2014 Sci. Rep. 4 4591Google Scholar

    [55]

    Sridhar S, Kennedy W L 1988 Rev. Sci. Instrum. 59 531Google Scholar

    [56]

    Barannik A A, Cherpak N T, He Y, Sun L, Zhang X, Vovnyuk M V, Wu Y 2018 Low Temp. Phys. 44 247Google Scholar

    [57]

    Wong-Ng W, McMurdie H F, Paretzkin B, Zhang Y M, Davis K L, Hubbard C R, Dragoo A L, Stewart J M 1987 Powder Diffr. 2 3

  • [1] Jiang Mei-Yan, Zhu Zheng-Jie, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Microstructural and electrochemical properties of sulfur ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [2] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [3] Wang Chang-Yuan, Yang Xiao-Hong, Ma Yong, Feng Yuan-Yuan, Xiong Jin-Long, Wang Wei. Microstructure and photoluminescence of ZnO:Cd nanorods synthesized by hydrothermal method. Acta Physica Sinica, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [4] Wang Rui, Hu Xiao-Jun. The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films. Acta Physica Sinica, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [5] Tian Jing, Yang Xing, Liu Shang-Jun, Lian Xiao-Juan, Chen Jin-Wei, Wang Rui-Lin. Effect of thickness on the properties of Cu(Inx,Ga1-x)Se2 back conduct Mo thin films prepared by DC sputtering. Acta Physica Sinica, 2013, 62(11): 116801. doi: 10.7498/aps.62.116801
    [6] Gu Shan-Shan, Hu Xiao-Jun, Huang Kai. Effects of annealing temperature on the microstructure and p-type conduction of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [7] Yang Duo, Zhong Ning, Shang Hai-Long, Sun Shi-Yang, Li Ge-Yang. Microstructures and mechanical properties of (Ti, N)/Al nanocomposite films by magnetron sputtering. Acta Physica Sinica, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [8] Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu. Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [9] Zhang Zeng-Yuan, Gao Xiao-Yong, Feng Hong-Liang, Ma Jiao-Min, Lu Jing-Xiao. Effect of vacuum thermal-annealing temperatures on the microstructure and optical properties of single-phased Ag2O film. Acta Physica Sinica, 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [10] Pan Jin-Ping, Hu Xiao-Jun, Lu Li-Ping, Yin Chi. Influence of annealing on the microstructure and electrochemical properties of B-doped nanocrystalline diamond films. Acta Physica Sinica, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [11] Liu Xue-Qin, Han Guo-Jian, Huang Chun-Kui, Lan Wei. Thickness dependence of microstructure for La0.9Sr0.1MnO3/Si films determined by micro-Raman spectroscopy. Acta Physica Sinica, 2009, 58(11): 8008-8013. doi: 10.7498/aps.58.8008
    [12] Liu Feng, Meng Yue-Dong, Ren Zhao-Xing, Shu Xing-Sheng. Characterization of ZrN films deposited by ICP enhanced RF magnetron sputtering. Acta Physica Sinica, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [13] Zhang Hong-Di, An Yu-Kai, Mai Zhen-Hong, Gao Ju, Hu Feng-Xia, Wang Yong, Jia Quan-Jie. Thickness effect on structure and magnetic properties of La0.8Ca0.2MnO3/SrTiO3 films. Acta Physica Sinica, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [14] Huang Rui, Lin Xuan-Ying, Yu Yun-Peng, Lin Kui-Xun, Zhu Zu-Song, Wei Jun-Hong. Effect of hydrogen dilution on structure and optical properties of polycrystalline silicon films. Acta Physica Sinica, 2006, 55(5): 2523-2528. doi: 10.7498/aps.55.2523
    [15] Cai Yan-Qing, Yao Xin, Li Gang. Study on the superheating phenomenon of YBCO thin film. Acta Physica Sinica, 2006, 55(2): 844-848. doi: 10.7498/aps.55.844
    [16] Liu Xiao-Bing, Shi Xiang-Hua, Liao Tai-Chang, Ren Peng, Liu Yue, Liu Yi, Xiong Zu-Hong, Ding Xun-Min, Hou Xiao-Yuan. The microstructure and characteristics of luminescent porous silicon film prepared by the physicochemical sonic-vacating method. Acta Physica Sinica, 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [17] Zhou Bing-Qing, Liu Feng-Zhen, Zhu Mei-Fang, Gu Jin-Hua, Zhou Yu-Qin, Liu Jin-Long, Dong Bao-Zhong, Li Guo-Hua, Ding Kun. The microstructure of hydrogenated microcrystalline silicon thin films studied by small-angle x-ray scattering. Acta Physica Sinica, 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [18] Zhang Shi-Bin, Liao Xian-Bo, An Long, Yang Fu-Hua, Kong Guang-Lin, Wang Yong-Qian, Xu Yan-Yue, Chen Chang-Yong, Diao Hong-Wei. . Acta Physica Sinica, 2002, 51(8): 1811-1815. doi: 10.7498/aps.51.1811
    [19] Wang Yong-Qian, Chen Wei-De, Chen Chang-Yong, Diao Hong-Wei, Zhang Shi-Ben, Xu Yan-Yue, Kong Guang-Lin, Liao Xian-Bo. . Acta Physica Sinica, 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [20] WANG YONG-QIAN, CHEN CHANG-YONG, CHEN WEI-DE, YANG FU-HUA, DIAO HONG-WEI, XU ZHEN-JIA, ZHANG SHI-BIN, KONG GUANG-LIN, LIAO XIAN-BO. THE MICROSTRUCTURE AND ITS HIGH-TEMPERATURE ANNEALING BEHAVIOURS OF a-Si∶O∶H FILM. Acta Physica Sinica, 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
Metrics
  • Abstract views:  4564
  • PDF Downloads:  115
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2022
  • Accepted Date:  09 November 2022
  • Available Online:  02 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回
Baidu
map