搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧离子注入纳米金刚石薄膜的微结构和电化学性能研究

王锐 胡晓君

引用本文:
Citation:

氧离子注入纳米金刚石薄膜的微结构和电化学性能研究

王锐, 胡晓君

The microstructural and electrochemical properties of oxygen ion implanted nanocrystalline diamond films

Wang Rui, Hu Xiao-Jun
PDF
导出引用
  • 在纳米金刚石薄膜中注入剂量为1012 cm-2的氧离子,并进行700,800,900和1000 ℃的真空退火处理,系统研究薄膜的微结构和电化学性能结果表明,氧离子注入未退火(O120)和氧离子注入1000 ℃退火(O121000)电极的电势窗口分别为4.60 V和3.61 V,远大于其他电极的电势窗口,并且这两个样品的电极传质效率较高,说明氧离子注入和高温退火有利于提高电极的传质效率. 红外光谱测试表明,样品O120 和O121000的表面没有碳氢基团终止层,而其他样品均含有氢终止层,说明氧离子注入和高温退火破坏了薄膜表面含碳氢基团的氢终止层,提高了薄膜的电化学性能Raman光谱测试结果表明,金刚石含量较高、内应力较小和非晶石墨相无序化程度较大的样品具有较好的电化学性能;并且薄膜晶界处的非晶碳的团簇数量或者尺寸减小,样品的电化学性能提高.
    The nanocrystalline diamond (NCD) films are implanted by oxygen ions with a dose of 1×1012 cm-2 and subsequently annealed at 700, 800, 900 and 1000 ℃, respectively. The microstructure and electrochemical properties of these NCD films are investigated systematically and the results show that the potential windows of the unannealed sample (O120) and 1000 ℃ annealed sample (O121000) increase up to 4.6 V and 3.61 V, respectively. The mass transfer efficiencies of the two samples are also better, indicating that the oxygen ion implantation and 1000 ℃ annealing can improve the mass transfer efficiency of NCD film. The results of infrared spectrum measurements show that there are no hydrogen atoms that are terminated to the surfaces of samples O120 and O121000, while hydrogen atoms terminate to the surfaces of the other samples. It is indicated that oxygen ion implantation and 1000 ℃ annealing can damage hydrogen terminations in the surface, which improves the electrochemical performances of NCD films. Raman spectrum measurements suggest that high content of diamond phase, small internal stress and more disordered amorphous carbon can improve the electrochemical properties of NCD films. When the number or size of sp2 carbon clusters in amorphous carbon grain boundaries decreases, the electrochemical properties of NCD films become better.
    • 基金项目: 国家自然科学基金(批准号:50972129)和浙江省钱江人才计划(批准号:2010R10026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50972129) and the Qianjiang Talent Project of Zhejiang Province of China (Grant No. 2010R10026).
    [1]

    Chailapakul O, Aksharanandana P, Frelink T 2001 Sens. Actuat. B 80 193

    [2]

    Denisova A E, Pleskov Y V 2008 Russ. J. Electrochem. 44 1083

    [3]

    Green S J, Mahe L S A, Rosseinsky D R 2013 Electrochim. Acta 107 111

    [4]

    Švorc L ubomír, Sochr Jozef, Svítková Jana 2013 Electrochim. Acta 87 503

    [5]

    Zhao G H, Shen S H, Li M F 2008 Chemosphere 73 1407

    [6]

    Zhao X Y, Zang J B, Wang Y H 2009 Electrochem Commun. 11 1297

    [7]

    Pang Y N, Zhao G H, Liu L 2009 Chin. Environ. Sci. 12 1255 (in Chinese) [庞雅宁, 赵国华, 刘磊 2009 中国环境科学 12 1255]

    [8]

    Hu H, Hu X J, Bai B W, Chen X H 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 61 148101]

    [9]

    Hu X J, Ye J S, Liu H J 2011 J Appl Phys. 109 053524

    [10]

    Gu S S, Hu X J, Huang K 2013 Acta Phys. Sin. 62 118101 (in Chinese) [顾珊珊, 胡晓君, 黄凯 2013 62 118101]

    [11]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410]

    [12]

    Pleskov Y V, Krotova M D, Elkin V V 2007 Electrochim. Acta 52 5470

    [13]

    Pleskov Y V, Krotova M D, Ralchenko V G 2010 Russ. J. Electrochem. 46 1063

    [14]

    Barek J, Jandová K, Pecková K, Zima J 2007 Talanta 74 421

    [15]

    Wang S, Swope V M, Butler J E 2009 Diamond Relat. Mater. 18 669

    [16]

    Silva E L, Neto M A, Fernandes A J S, Bastos A C, Silva R F, Zheludkevich M L, Oliveira F J 2010 Diamond Relat. Mater. 19 1330

    [17]

    Liu X B, Jia X P, Zhang Z F, Huang H Li, Zhou Z X, Ma H A 2011 Chin. Phys. B 20 128102

    [18]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [19]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z Fei, Ma H A 2012 Chin. Phys. B 21 058101

    [20]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [21]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [22]

    Gu S S, Hu X J 2013 J. Appl. Phys. 114 023506

    [23]

    Haymond S, Babcock G T, Swain G M 2002 J. Am. Chem. Soc. 124 10634

    [24]

    Chen H Y, Ju H 1992 Chin. J. Anal. Chem. 9 997 (in Chinese) [陈洪渊, 鞠熀 1992 分析化学 9 997]

    [25]

    Gao M L 2010 M.S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [高明亮 2010 硕士学位论文 (合肥: 中国科学技术大学)]

    [26]

    Mcnamara K M, Williams B E, Gleason K K 1994 J. Appl. Phys. 76 2466

    [27]

    Tang C J, Neves A J, Carmo M C 2005 Appl. Phys. Lett. 86 223107

    [28]

    Tang C J, Neves A J, Fernandes A J S 2002 Diamond Relat. Mater. 11 527

    [29]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 48101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 48101]

    [30]

    Simon N, Girard H, Ballutaud D 2005 Diamond Relat. Mater. 14 1179

    [31]

    Hu X J, Ye J S, Hu H 2011 Appl. Phys. Lett. 99 131902

    [32]

    Michaelson S, Lifshitz Y, Ternyak O 2007 Diamond Relat. Mater. 16 845

    [33]

    Schwan J, Ulrich S, Batori V 1996 J. Appl. Phys. 80 440

    [34]

    Sanchez N A, Rincon C, Zambrano G 2000 Thin Solid Films 373 247

    [35]

    Abrasonis G, Gago R, Vinnichenko M 2006 Phys. Rev. B 73 125427

    [36]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [37]

    Pleskov Y V, Krotova M D, Saveliev A V, Ralchenko V G 2007 Diamond Relat. Mater. 16 2114

    [38]

    Ye H T, Sun C Q, Huang H T, Peter H 2000 Appl. Phys. Lett. 78 13

  • [1]

    Chailapakul O, Aksharanandana P, Frelink T 2001 Sens. Actuat. B 80 193

    [2]

    Denisova A E, Pleskov Y V 2008 Russ. J. Electrochem. 44 1083

    [3]

    Green S J, Mahe L S A, Rosseinsky D R 2013 Electrochim. Acta 107 111

    [4]

    Švorc L ubomír, Sochr Jozef, Svítková Jana 2013 Electrochim. Acta 87 503

    [5]

    Zhao G H, Shen S H, Li M F 2008 Chemosphere 73 1407

    [6]

    Zhao X Y, Zang J B, Wang Y H 2009 Electrochem Commun. 11 1297

    [7]

    Pang Y N, Zhao G H, Liu L 2009 Chin. Environ. Sci. 12 1255 (in Chinese) [庞雅宁, 赵国华, 刘磊 2009 中国环境科学 12 1255]

    [8]

    Hu H, Hu X J, Bai B W, Chen X H 2012 Acta Phys. Sin. 61 148101 (in Chinese) [胡衡, 胡晓君, 白博文, 陈小虎 2012 61 148101]

    [9]

    Hu X J, Ye J S, Liu H J 2011 J Appl Phys. 109 053524

    [10]

    Gu S S, Hu X J, Huang K 2013 Acta Phys. Sin. 62 118101 (in Chinese) [顾珊珊, 胡晓君, 黄凯 2013 62 118101]

    [11]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410]

    [12]

    Pleskov Y V, Krotova M D, Elkin V V 2007 Electrochim. Acta 52 5470

    [13]

    Pleskov Y V, Krotova M D, Ralchenko V G 2010 Russ. J. Electrochem. 46 1063

    [14]

    Barek J, Jandová K, Pecková K, Zima J 2007 Talanta 74 421

    [15]

    Wang S, Swope V M, Butler J E 2009 Diamond Relat. Mater. 18 669

    [16]

    Silva E L, Neto M A, Fernandes A J S, Bastos A C, Silva R F, Zheludkevich M L, Oliveira F J 2010 Diamond Relat. Mater. 19 1330

    [17]

    Liu X B, Jia X P, Zhang Z F, Huang H Li, Zhou Z X, Ma H A 2011 Chin. Phys. B 20 128102

    [18]

    Zhang Z F, Jia X P, Liu X B, Hu M H, Li Y, Yan B M, Ma H A 2012 Chin. Phys. B 21 038103

    [19]

    Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z Fei, Ma H A 2012 Chin. Phys. B 21 058101

    [20]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [21]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [22]

    Gu S S, Hu X J 2013 J. Appl. Phys. 114 023506

    [23]

    Haymond S, Babcock G T, Swain G M 2002 J. Am. Chem. Soc. 124 10634

    [24]

    Chen H Y, Ju H 1992 Chin. J. Anal. Chem. 9 997 (in Chinese) [陈洪渊, 鞠熀 1992 分析化学 9 997]

    [25]

    Gao M L 2010 M.S. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [高明亮 2010 硕士学位论文 (合肥: 中国科学技术大学)]

    [26]

    Mcnamara K M, Williams B E, Gleason K K 1994 J. Appl. Phys. 76 2466

    [27]

    Tang C J, Neves A J, Carmo M C 2005 Appl. Phys. Lett. 86 223107

    [28]

    Tang C J, Neves A J, Fernandes A J S 2002 Diamond Relat. Mater. 11 527

    [29]

    Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 48101 (in Chinese) [颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 63 48101]

    [30]

    Simon N, Girard H, Ballutaud D 2005 Diamond Relat. Mater. 14 1179

    [31]

    Hu X J, Ye J S, Hu H 2011 Appl. Phys. Lett. 99 131902

    [32]

    Michaelson S, Lifshitz Y, Ternyak O 2007 Diamond Relat. Mater. 16 845

    [33]

    Schwan J, Ulrich S, Batori V 1996 J. Appl. Phys. 80 440

    [34]

    Sanchez N A, Rincon C, Zambrano G 2000 Thin Solid Films 373 247

    [35]

    Abrasonis G, Gago R, Vinnichenko M 2006 Phys. Rev. B 73 125427

    [36]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [37]

    Pleskov Y V, Krotova M D, Saveliev A V, Ralchenko V G 2007 Diamond Relat. Mater. 16 2114

    [38]

    Ye H T, Sun C Q, Huang H T, Peter H 2000 Appl. Phys. Lett. 78 13

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能.  , 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究.  , 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [3] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能.  , 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [4] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能.  , 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [5] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能.  , 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [6] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能.  , 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [7] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能.  , 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [8] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [9] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究.  , 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [10] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响.  , 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [11] 王峰浩, 胡晓君. 氧离子注入微晶金刚石薄膜的微结构与光电性能研究.  , 2013, 62(15): 158101. doi: 10.7498/aps.62.158101
    [12] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响.  , 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [13] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响.  , 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [14] 胡晓君, 胡衡, 陈小虎, 许贝. 磷离子注入纳米金刚石薄膜的n型导电性能与微结构研究.  , 2011, 60(6): 068101. doi: 10.7498/aps.60.068101
    [15] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [16] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响.  , 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [17] 刘 峰, 孟月东, 任兆杏, 舒兴胜. 感应耦合等离子体增强射频磁控溅射沉积ZrN薄膜及其性能研究.  , 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [18] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响.  , 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [19] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性.  , 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [20] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响.  , 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
计量
  • 文章访问数:  6289
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-14
  • 修回日期:  2014-04-02
  • 刊出日期:  2014-07-05

/

返回文章
返回
Baidu
map