搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响

胡衡 胡晓君 白博文 陈小虎

引用本文:
Citation:

退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响

胡衡, 胡晓君, 白博文, 陈小虎

Effects of annealing time on the microstructural and electrochemical properties of B-doped nanocrystalline diamond films

Hu Heng, Hu Xiao-Jun, Bai Bo-Wen, Chen Xiao-Hu
PDF
导出引用
  • 采用高分辨透射电镜、紫外和可见光Raman光谱及循环伏安法研究了1000 ℃下退火不同时间的硼掺杂纳米金刚石薄膜的微结构和电化学性能. 结果表明,随退火时间的延长,薄膜中纳米金刚石晶粒尺寸逐渐减小.当退火时间为0.5 h时, 金刚石晶粒尺寸由未退火样品的约15 nm减小为约8 nm, 金刚石相含量增加;当退火时间为2.0 h时,金刚石晶粒减小为23 nm, 此时晶界增多,金刚石相含量减少;退火时间为2.5 h时纳米金刚石晶粒尺寸和金刚石相含量又略有上升.晶粒尺寸和金刚石相含量的变化表明薄膜在退火过程中发生了金刚石和非晶碳相的相互转变.可见光Raman光谱测试结果表明,不同退火时间下, G峰位置变化趋势与ID/IG值变化一致,说明薄膜内sp2碳团簇较大时, 非晶石墨相的有序化程度较高.退火0.5, 1.0, 1.5和2.0 h时, 电极表面进行准可逆电化学反应,而未退火和退火时间为2.5 h时电极表面进行不可逆电化学反应.退火有利于提高薄膜电极的传质效率, 退火0.5 h时薄膜电极的传质效率最高,催化氧化性能最好.较小的晶粒尺寸、 较高的金刚石相含量以及纳米金刚石晶粒的均匀分布有利于提高电极表面反应的可逆性和催化氧化性能.
    The effects of annealing time under 1000 ℃ on the microstructural and the electrochemical properties of boron-doped nanocrystalline diamond (BDND) films are investigated by HRTEM, UV and visible Raman spectroscopy, and cyclic voltammetry measurements. The results show that the size of nano-diamond grain in the film decreases with annealing time increasing. When the annealing time is 0.5 h, the grain size decreases from about 15 nm in the unannealed sample to about 8 nm and the content of diamond phase increases. When the annealing time increases to 2.0 h, the diamond grain size decreases to 2-3 nm, and the content of diamond phase decreases with the grain boundary increasing. In the case of annealing time of 2.5 h, the grain size of nano-diamond and the content of diamond phase increase slightly. The variations of nano-diamond grain size and the content of diamond phase indicate that the transformation between the diamond phase and the amorphous carbon occurs under the annealing with different times. The visible Raman spectra show that the G-peak position and the ID/IG value exhibit similar variations with annealing time increasing, revealing that the ordering of the amorphous graphite phase is improved when sp2 carbon cluster increases in number or size. The reactions on the electrode surface are quasi-reversible when the annealing times are 0.5, 1.0, 1.5 and 2.0 h. On the contrary, the reactions are irreversible when the sample is unannealed or annealed for 2.5 h. It is observed that the annealing treatment is beneficial to the improvement of the electrode mass transfer efficiency of BDND film. When the annealing time is 0.5 h, the electrode mass transfer efficiency as well as the ability of catalytic oxidation of BDND film is best. The results suggest that the smaller size of nano-diamond grain, the higher content of diamond phase and the uniform distribution of the nanocrystalline diamond grains are conducible to the improvement of the reaction reversibility on the electrode surface and the ability of catalytic oxidation of BDND films.
    • 基金项目: 国家自然科学基金(批准号: 50972129, 50602039)和浙江省钱江人才计划(批准号: 2010R10026)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129, 50602039) and Qianjiang Talent Project of Zhejiang Province of China (Grant No. 2010R10026).
    [1]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179

    [2]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469

    [3]

    Xu J S, Chen Q Y, Swain G M 1998 Anal. Chem. 70 3146

    [4]

    Swain G M 1994 J. Electrochem. Soc. 141 3382

    [5]

    Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856

    [6]

    Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369

    [7]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [8]

    Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmüller D 2006 Appl. Phys. Lett. 88 101908

    [9]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [10]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [11]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410]

    [12]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [13]

    Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119

    [14]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl. Phys. 109 053524

    [15]

    Ferrari A C, Robertson J 2004 Phil. Trans. R. Soc. Lond. A 362 2477

    [16]

    Birrell J, Gerbi J E, Auciello O, Gibson J M, Johnson J, Carlisle J A 2005 Diam. Rel. Mater. 14 86

    [17]

    Ferrari A C, Robertson J 2000 The NATO Conference on Nanostructured Carbon for Advanced Applications, Erice, July, 2000 p177-184

    [18]

    Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Günther B 2003 Diam. Relat. Mater. 12 268

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Klauser F, Steinmuüller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vap. Deposition 16 127

    [22]

    Teii K, Ikeda T, Fukutomi A, Uchino K 2006 J. Vac. Sci. Technol. B 24 263

    [23]

    Jeedigunta S, Xu Z Q , Hirai M, Spagnol P, Kumar A 2008 Diam. Rel. Mater. 17 1994

    [24]

    Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486

    [25]

    Hu X J, Cao H Z, Zheng G Q, Cao S 2006 J. Chem. Eng. Chin. Univ. 20 932 (in Chinese) [胡晓君, 曹华珍, 郑国渠, 曹帅 2006 高校化学工程学报 20 932]

    [26]

    Show Y, Witek M A, Snothalia P, Swain G M 2003 Chem. Mater. 15 879

    [27]

    Ramesham R 1998 Thin Solid Films 315 222

    [28]

    Haymond S, Babcock T G, Swain G M 2002 J. Am. Chem. Soc. 124 10634

  • [1]

    Fujishima A, Rao T N, Popa E, Sarada B V, Yagi I, Tryk D A 1999 J. Electroanal. Chem. 473 179

    [2]

    Sarada B V, Rao T N, Tryk D A, Fujishima A 1999 J. Electrochem. Soc. 146 1469

    [3]

    Xu J S, Chen Q Y, Swain G M 1998 Anal. Chem. 70 3146

    [4]

    Swain G M 1994 J. Electrochem. Soc. 141 3382

    [5]

    Declements R, Swain G M 1997 J. Electrochem. Soc. 144 856

    [6]

    Fischer A E, Swain G M 2005 J. Electrochem. Soc. 152 369

    [7]

    Li S S, Ma H A, Li X L, Su T C, Huang G F, Li Y, Jia X P 2011 Chin. Phys. B 20 028103

    [8]

    Achatz P, Garrido J A, Stutzmann M, Williams O A, Gruen D M, Kromka A, Steinmüller D 2006 Appl. Phys. Lett. 88 101908

    [9]

    May P W, Ludlow W J, Hannaway M 2008 Diam. Rel. Mater. 17 105

    [10]

    Show Y, Witek M A, Sonthalia P 2003 Chem. Mater. 15 879

    [11]

    Pan J P, Hu X J, Lu L P, Yin C 2010 Acta Phys. Sin. 59 7410 (in Chinese) [潘金平, 胡晓君, 陆利平, 印迟 2010 59 7410]

    [12]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 64 075414

    [13]

    Rodil S E, Muhl S, Maca S, Ferrari A C 2003 Thin Solid Films 433 119

    [14]

    Hu X J, Ye J S, Liu H J, Shen Y G, Chen X H, Hu H 2011 J. Appl. Phys. 109 053524

    [15]

    Ferrari A C, Robertson J 2004 Phil. Trans. R. Soc. Lond. A 362 2477

    [16]

    Birrell J, Gerbi J E, Auciello O, Gibson J M, Johnson J, Carlisle J A 2005 Diam. Rel. Mater. 14 86

    [17]

    Ferrari A C, Robertson J 2000 The NATO Conference on Nanostructured Carbon for Advanced Applications, Erice, July, 2000 p177-184

    [18]

    Pfeiffer R, Kuzmany H, Knoll P, Bokova S, Salk N, Günther B 2003 Diam. Relat. Mater. 12 268

    [19]

    Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405

    [20]

    Ferrari A C, Robertson J 2000 Phys. Rev. B 61 14095

    [21]

    Klauser F, Steinmuüller-Nethl D, Kaindl R, Bertel E, Memmel N 2010 Chem. Vap. Deposition 16 127

    [22]

    Teii K, Ikeda T, Fukutomi A, Uchino K 2006 J. Vac. Sci. Technol. B 24 263

    [23]

    Jeedigunta S, Xu Z Q , Hirai M, Spagnol P, Kumar A 2008 Diam. Rel. Mater. 17 1994

    [24]

    Michaelson S, Hoffman A 2006 Diam. Rel. Mater. 15 486

    [25]

    Hu X J, Cao H Z, Zheng G Q, Cao S 2006 J. Chem. Eng. Chin. Univ. 20 932 (in Chinese) [胡晓君, 曹华珍, 郑国渠, 曹帅 2006 高校化学工程学报 20 932]

    [26]

    Show Y, Witek M A, Snothalia P, Swain G M 2003 Chem. Mater. 15 879

    [27]

    Ramesham R 1998 Thin Solid Films 315 222

    [28]

    Haymond S, Babcock T G, Swain G M 2002 J. Am. Chem. Soc. 124 10634

  • [1] 陆益敏, 汪雨洁, 徐曼曼, 王海, 奚琳. 磁场辅助激光生长类金刚石膜的微结构及光学性能.  , 2024, 73(10): 108101. doi: 10.7498/aps.73.20240145
    [2] 郭厦蕾, 侯育花, 郑寿红, 黄有林, 陶小马. Ge-S/F共掺杂对Li2MSiO4(M = Mn, Fe)晶体结构和性能影响的理论研究.  , 2022, 71(17): 178201. doi: 10.7498/aps.71.20220473
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究.  , 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能.  , 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [5] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能.  , 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [6] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能.  , 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [7] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能.  , 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [8] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究.  , 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [9] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究.  , 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [10] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能.  , 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [11] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响.  , 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [12] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响.  , 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [13] 张增院, 郜小勇, 冯红亮, 马姣民, 卢景霄. 真空热退火温度对单相Ag2O薄膜微结构和光学性质的影响.  , 2011, 60(3): 036107. doi: 10.7498/aps.60.036107
    [14] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究.  , 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [15] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响.  , 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [16] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响.  , 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [17] 周炳卿, 刘丰珍, 朱美芳, 谷锦华, 周玉琴, 刘金龙, 董宝中, 李国华, 丁 琨. 利用x射线小角散射技术研究微晶硅薄膜的微结构.  , 2005, 54(5): 2172-2175. doi: 10.7498/aps.54.2172
    [18] 刘小兵, 史向华, 廖太长, 任 鹏, 柳 玥, 柳 毅, 熊祖洪, 丁训民, 侯晓远. 声空化物理化学综合法制备发光多孔硅薄膜的微结构与发光特性.  , 2005, 54(1): 416-421. doi: 10.7498/aps.54.416
    [19] 王永谦, 陈维德, 陈长勇, 刁宏伟, 张世斌, 徐艳月, 孔光临, 廖显伯. 快速热退火和氢等离子体处理对富硅氧化硅薄膜微结构与发光的影响.  , 2002, 51(7): 1564-1570. doi: 10.7498/aps.51.1564
    [20] 王永谦, 陈长勇, 陈维德, 杨富华, 刁宏伟, 许振嘉, 张世斌, 孔光临, 廖显伯. a-Si∶O∶H薄膜微结构及其高温退火行为研究.  , 2001, 50(12): 2418-2422. doi: 10.7498/aps.50.2418
计量
  • 文章访问数:  8340
  • PDF下载量:  662
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-02
  • 修回日期:  2011-12-21
  • 刊出日期:  2012-07-05

/

返回文章
返回
Baidu
map