Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors

Luo Ju-Xin Gao Hong-Li Deng Jin-Xiang Ren Jia-Hui Zhang Qing Li Rui-Dong Meng Xue

Citation:

Effects of annealing temperature on properties of gallium oxide thin films and ultraviolet detectors

Luo Ju-Xin, Gao Hong-Li, Deng Jin-Xiang, Ren Jia-Hui, Zhang Qing, Li Rui-Dong, Meng Xue
PDF
HTML
Get Citation
  • In this work, gallium oxide (Ga2O3) thin films are deposited on quartz substrates by radio frequency magnetron sputtering at room temperature and annealed in argon atmosphere at different temperatures. The influences of annealing temperatures in the argon atmosphere on crystal structure, transmittance, surface morphology, and optical band gap of the samples are investigated in detail. It is found that the annealing process can improve the crystalline quality of the film, but high-temperature annealing can also easily cause oxygen elements in the film to escape from the film to form oxygen vacancies, which is evidenced by XPS test results. To obtain the effect of the annealing process on the performance of gallium oxide thin film detector, the metal-semiconductor-metal (MSM) photodetector based on the sample annealed at 800 °C, which is compared with untreated sample operated at a reverse bias voltage of 1.1 V, can achieve excellent comprehensive photo-detection properties for 254 nm ultraviolet light: the light-dark current ratio (I254/Idark), responsivity and specific detectivity are as high as 1021.3, 0.106 A/W and 1.61 × 1012 Jones, respectively, which are 7.5, 195 and 38.3 times those of the unannealed sample device. And the external quantum efficiency is improved by 51.6%. The rise time of sample detector (0.19/0.48 s) annealed at 800 ℃ decreases compared with that of the unannealed sample (0.93/0.93 s), and the descent time of 800 ℃ detector (0.64/0.72 s)increases compared with that of the unannealed sample (0.45/0.49 s), respectively. By comparing the parameters with those of other current gallium oxide-based MSM photodetectors, it is found that the detector parameters of this work have some gaps compared with the current optimal parameters, which is attributed to the fact that the quartz substrate is selected for this work and not the sapphire substrate that is better matching with gallium oxide, resulting in the poor quality of the film compared with that of the sample on the sapphire substrate, and in this work, the photodetector has the high light-dark current ratio (PDCR) and detection rate (D*). In the end, the mechanism of increasing oxygen vacancies after being annealed, which leads to the improvement of detector performance parameters, is analyzed in detail.
      Corresponding author: Deng Jin-Xiang, jdeng@bjut.edu.cn
    • Funds: Project supported by the Beijing New-star Plan of Science and Technology, China (Grant No. Z211100002121079) and the Natural Science Foundation of Beijing City, China (Grant Nos. 4192016, 4102014).
    [1]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [2]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [3]

    Wang H, Ma J, Cong L, Zhou H, Li P, Fei L, Li B, Xu H, Liu Y 2021 Mater. Today Phys. 20 100464Google Scholar

    [4]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [5]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [6]

    Lu N Y, Gu Y, Weng Y Y, Da Z C, Ding Y 2019 Mater. Res. Express 6 095033Google Scholar

    [7]

    Wang L, Gu D W, Shen L J 2017 Solid State Sci. 72 10Google Scholar

    [8]

    Yu M, Wang H Q, Wei W, Peng B, Yuan L, Hu J C, Zhang Y M, Jia R X 2021 Appl. Surf. Sci. 568 150826Google Scholar

    [9]

    Ghosh S, Baral M, Kamparath R, Singh S D, Gangul T 2019 Appl. Phys. Lett. 115 251603Google Scholar

    [10]

    Kaur D, Kumar M 2021 Adv. Opt. Mater. 3 2002160Google Scholar

    [11]

    Wang D, Ma X C, Xiao H D, Chen R R, Le Yong, Luan C N, Zhang B, Ma J 2022 Mater. Res. Bull. 149 111718Google Scholar

    [12]

    Mukhopadhyay P, Hatipoglu I, Sakthivel T S, Hunter D A, Edwards P R, Martin R W, Naresh-Kumar G, Seal S, Schoenfeld W V 2021 Adv. Photonics Res. 2 2000067Google Scholar

    [13]

    Jeong S H, Vu Ti K O, Kim E K 2021 J. Alloys Compd. 877 160291Google Scholar

    [14]

    Yu M, Lv C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S N, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

    [15]

    Shen H, Yin Y N, Tian K, Baskaran K, Duan L B, Zhao X R, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [16]

    Patila V, Lee B T, Jeong S H 2022 J. Alloys Compd. 894 162551Google Scholar

    [17]

    Li M Q, Yang N, Wang G G, Zhang H Y, Han J C 2019 Appl. Surf. Sci. 471 694Google Scholar

    [18]

    Zhang Y J, Yan J L, Li Q S, Qu C, Zhang L Y, Li T 2011 Physica B 406 3079Google Scholar

    [19]

    Goyal A, Yadav B S, Thakur O P, Kapoor A K, Muralidharan R 2014 J. Alloys Compd. 583 214Google Scholar

    [20]

    Feng Z Q, Huang L, Feng Q, Li X, Zhang H, Tang W h, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 2229Google Scholar

    [21]

    Tien C H, Hsiao B W, Chen C M, Chen M I, Chiang J L, Wuu D S 2020 Ceram. Int. 46 24147Google Scholar

    [22]

    Singh A K, Gupta M, Sathe V, Katharria Y S 2021 Superlattice Microst. 156 106976Google Scholar

    [23]

    Yu J G, Nie Z Z, Dong L P, Yuan L, Li D J, Huang Y, Zhang L C, Zhang Y M, Jia R X 2019 J. Alloys Compd. 798 458Google Scholar

    [24]

    Wang H Y, Tang C M, Yang W J, Zhao J J, Liu L H, Mu J X, Zhang Y P, Zeng C Y 2022 Ceram. Int. 48 3481Google Scholar

    [25]

    Cui R R, Zhang J, Luo Z J, Guo X, Ding Z, Deng C Y 2021 Chinese Phys. B 2 028505Google Scholar

    [26]

    Wei P, Zhu D M, Huang S S, Zhou W C, Luo F 2013 Appl. Surf. Sci. 285P 577

    [27]

    Zhou H T, Cong L J, Ma J G, Chen M Z, Song D Y, Wang H B, Li P, Li B S, Xu H Y, Liu Y C 2020 J. Alloys Compd. 847 156536Google Scholar

    [28]

    Han J F, Yang D Z, Ma D G, Qiao W Q, Wang Z Y 2019 Org. Electron. 68 242Google Scholar

    [29]

    Gong. X, Tong M, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    Xu R, Ma X C, Chen Y H, Mei Y, Ying L Y, Zhang B P, Long H 2022 Mat. Sci. Semicon. Proc. 144 106621Google Scholar

    [32]

    Zhou S, Peng X, Liu H W, Zhang Z F, Ye L J, Li H L, Xiong Y Q, Niu L B, Chen F L, Fang L, Kong C Y, Li W J, Yang X, Zhang A H 2022 Opt. Mater. Express 12 327

    [33]

    Wang Q L, Huang P, Liu Q, Li Y X, Qu Q L, Li M K, Homewood K P, Lu Y M, He Y B 2020 J. Alloys Compd. 834 155036Google Scholar

  • 图 1  氧化镓MSM探测器器件结构图

    Figure 1.  The device structure of the gallium oxide MSM detector.

    图 2  不同退火温度的XRD图谱

    Figure 2.  XRD patterns at different annealing temperatures.

    图 3  (a) 不同退火温度下的半峰宽和峰强度图像; (b)不同退火温度的平均晶粒尺寸图像

    Figure 3.  (a) Images of the half-peak width and peak intensity at different annealing temperatures; (b) images of average grain size at different annealing temperatures.

    图 4  退火温度分别为600 ℃ (a), 700 ℃ (b), 800 ℃ (c)和900 ℃ (d)的AFM图像, 以及4个样品的均方根粗糙度图像(e)

    Figure 4.  AFM images of annealing temperatures of 600 ℃ (a), 700 ℃ (b), 800 ℃ (c) and 900 ℃ (d), and RMS roughness images (e) of the four samples.

    图 5  (a) 不同退火温度下的氧化镓薄膜透射光谱; (b) 不同退火温度薄膜样品光学带隙图像

    Figure 5.  (a) Transmission spectra of Ga2O3 thin films at different annealing temperatures; (b) optical band gap images of thin films at different annealing temperatures.

    图 6  不同退火温度下薄膜样品的XPS测量全谱 (a) 以及沉积态 (b) 和退火样品 (c) 的O1s精细谱

    Figure 6.  XPS survey spectra (a) and high-resolution O1s spectra for the as-grown (b), in different annealing temperatures (c) of Ga2O3 film.

    图 7  室温下生长样品 (a) 和800 ℃ 退火样品 (b) 在黑暗环境下及254 nm 紫外光源照射下的I-V图像和半对数图像以及在5 V偏压下, 25 ℃ (c), 800 ℃ (d)的I-T图像及其双指数拟合I-T图像 (e) 和 (f)

    Figure 7.  I-V images and semi-logarithmic images of samples grown at room temperature (a) and annealed at 800 ℃ (b) in the dark under 254 nm UV light source and under 5 V bias, the I-T image of 25 ℃ (c), 800 ℃ (d) and its bi-exponential fitting I-T images (e), (f).

    图 8  光开启时 (a) 和光关闭后 (b) 氧化镓MSM器件能带示意图, 途径1表示光生载流子的产生 (a) 与复合 (b), 途径2表示氧空位缺陷捕获 (a) 和释放 (b) 光生电子

    Figure 8.  Schematic diagram of the energy band of the gallium oxide MSM device when the light is turned on (a) and after the light is turned off (b). Pathway 1 represents the generation (a) and recombination (b) of photogenerated carriers, and pathway 2 represents oxygen vacancy defect trapping (a) and release (b) photogenerated electrons.

    表 1  在5 V偏压下I-T双指数拟合图像响应时间参数表

    Table 1.  I-T Bi-exponential fitted image response time parameters at 5 V bias.

    Photodetectorτr1/sτr2/sτd1/sτd2/s
    25 ℃0.930.930.450.49
    800 ℃0.190.480.640.72
    DownLoad: CSV

    表 2  在–1.1 V偏压下的探测器参数汇总表

    Table 2.  Summary table of detector parameters at –1.1 V bias.

    PhotodetectorIdark/nAPDCR(I254/Idark)Rλ/(A·W–1)EQE/%D*/Jones
    25 ℃0.02621365.54 × 10–40.24.21 × 1010
    800 ℃0.6771021.30.10651.81.61 × 1012
    DownLoad: CSV

    表 3  当前氧化镓基MSM结构光电探测器主要性能参数汇总表

    Table 3.  Comparison of main performance parameters of current gallium oxide-based MSM photodetectors

    PhotodetectorMethodId/nAPDCRR254/
    (A·W–1)
    D*/JonesRef.
    Ga2O3/Al2O3Sol-gel0.125@15 V6730.044.6 × 1011[14]
    Ga2O3/SiCSputtering7.6@10 V3832.61.6 × 1012[17]
    Ga2O3/Al2O3PLD0.1@20 V52060[27]
    N:Ga2O3/Al2O3Sputtering0.01@10 V0.0136.1 × 1010[30]
    Ga2O3/Al2O3MOCVD0.17@10 V4.539.40.17 × 1012[31]
    Ga2O3/Al2O3Sputtering8.2 × 10–5@10 V3.58 × 1051.936.53 × 1013[32]
    Ga2O3/QuartzSputtering0.677@1.1 V1021.30.1061.61 × 1012This work
    DownLoad: CSV
    Baidu
  • [1]

    Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L, Li Y R 2016 Opt. Mater. 51 203Google Scholar

    [2]

    Xu J J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [3]

    Wang H, Ma J, Cong L, Zhou H, Li P, Fei L, Li B, Xu H, Liu Y 2021 Mater. Today Phys. 20 100464Google Scholar

    [4]

    Xie C, Lu X T, Liang Y, Chen H H, Wang L, Wu C Y, Wu D, Yang W H, Luo L B 2021 J. Mater. Sci. Technol. 72 189Google Scholar

    [5]

    Guo X C, Hao N H, Guo D Y, Wu Z P, An Y H, Chu X L, Li L H, Li P G, Lei M, Tang W H 2016 J. Alloys Compd. 660 136Google Scholar

    [6]

    Lu N Y, Gu Y, Weng Y Y, Da Z C, Ding Y 2019 Mater. Res. Express 6 095033Google Scholar

    [7]

    Wang L, Gu D W, Shen L J 2017 Solid State Sci. 72 10Google Scholar

    [8]

    Yu M, Wang H Q, Wei W, Peng B, Yuan L, Hu J C, Zhang Y M, Jia R X 2021 Appl. Surf. Sci. 568 150826Google Scholar

    [9]

    Ghosh S, Baral M, Kamparath R, Singh S D, Gangul T 2019 Appl. Phys. Lett. 115 251603Google Scholar

    [10]

    Kaur D, Kumar M 2021 Adv. Opt. Mater. 3 2002160Google Scholar

    [11]

    Wang D, Ma X C, Xiao H D, Chen R R, Le Yong, Luan C N, Zhang B, Ma J 2022 Mater. Res. Bull. 149 111718Google Scholar

    [12]

    Mukhopadhyay P, Hatipoglu I, Sakthivel T S, Hunter D A, Edwards P R, Martin R W, Naresh-Kumar G, Seal S, Schoenfeld W V 2021 Adv. Photonics Res. 2 2000067Google Scholar

    [13]

    Jeong S H, Vu Ti K O, Kim E K 2021 J. Alloys Compd. 877 160291Google Scholar

    [14]

    Yu M, Lv C D, Yu J G, Shen Y M, Yuan L, Hu J C, Zhang S N, Cheng H J, Zhang Y M, Jia R X 2020 Mater. Today Commun. 25 101532Google Scholar

    [15]

    Shen H, Yin Y N, Tian K, Baskaran K, Duan L B, Zhao X R, Tiwari A 2018 J. Alloys Compd. 766 601Google Scholar

    [16]

    Patila V, Lee B T, Jeong S H 2022 J. Alloys Compd. 894 162551Google Scholar

    [17]

    Li M Q, Yang N, Wang G G, Zhang H Y, Han J C 2019 Appl. Surf. Sci. 471 694Google Scholar

    [18]

    Zhang Y J, Yan J L, Li Q S, Qu C, Zhang L Y, Li T 2011 Physica B 406 3079Google Scholar

    [19]

    Goyal A, Yadav B S, Thakur O P, Kapoor A K, Muralidharan R 2014 J. Alloys Compd. 583 214Google Scholar

    [20]

    Feng Z Q, Huang L, Feng Q, Li X, Zhang H, Tang W h, Zhang J C, Hao Y 2018 Opt. Mater. Express 8 2229Google Scholar

    [21]

    Tien C H, Hsiao B W, Chen C M, Chen M I, Chiang J L, Wuu D S 2020 Ceram. Int. 46 24147Google Scholar

    [22]

    Singh A K, Gupta M, Sathe V, Katharria Y S 2021 Superlattice Microst. 156 106976Google Scholar

    [23]

    Yu J G, Nie Z Z, Dong L P, Yuan L, Li D J, Huang Y, Zhang L C, Zhang Y M, Jia R X 2019 J. Alloys Compd. 798 458Google Scholar

    [24]

    Wang H Y, Tang C M, Yang W J, Zhao J J, Liu L H, Mu J X, Zhang Y P, Zeng C Y 2022 Ceram. Int. 48 3481Google Scholar

    [25]

    Cui R R, Zhang J, Luo Z J, Guo X, Ding Z, Deng C Y 2021 Chinese Phys. B 2 028505Google Scholar

    [26]

    Wei P, Zhu D M, Huang S S, Zhou W C, Luo F 2013 Appl. Surf. Sci. 285P 577

    [27]

    Zhou H T, Cong L J, Ma J G, Chen M Z, Song D Y, Wang H B, Li P, Li B S, Xu H Y, Liu Y C 2020 J. Alloys Compd. 847 156536Google Scholar

    [28]

    Han J F, Yang D Z, Ma D G, Qiao W Q, Wang Z Y 2019 Org. Electron. 68 242Google Scholar

    [29]

    Gong. X, Tong M, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    Xu R, Ma X C, Chen Y H, Mei Y, Ying L Y, Zhang B P, Long H 2022 Mat. Sci. Semicon. Proc. 144 106621Google Scholar

    [32]

    Zhou S, Peng X, Liu H W, Zhang Z F, Ye L J, Li H L, Xiong Y Q, Niu L B, Chen F L, Fang L, Kong C Y, Li W J, Yang X, Zhang A H 2022 Opt. Mater. Express 12 327

    [33]

    Wang Q L, Huang P, Liu Q, Li Y X, Qu Q L, Li M K, Homewood K P, Lu Y M, He Y B 2020 J. Alloys Compd. 834 155036Google Scholar

  • [1] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. GaSe/β-Ga2O3 heterojunction based self-powered solar-blind ultraviolet photoelectric detector. Acta Physica Sinica, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi. Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications. Acta Physica Sinica, 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [3] Dong Dian-Meng, Wang Cheng, Zhang Qing-Yi, Zhang Tao, Yang Yong-Tao, Xia Han-Chi, Wang Yue-Hui, Wu Zhen-Ping. Ga2O3-based metal-insulator-semiconductor solar-blind ultraviolet photodetector with HfO2 inserting layer. Acta Physica Sinica, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [4] Kuang Dan, Xu Shuang, Shi Da-Wei, Guo Jian, Yu Zhi-Nong. High performance amorphous Ga2O3 thin film solar blind ultraviolet photodetectors decorated with Al nanoparticles. Acta Physica Sinica, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [5] Wang Hai-Bo, Wan Li-Juan, Fan Min, Yang Jin, Lu Shi-Bin, Zhang Zhong-Xiang. Barrier-tunable gallium oxide Schottky diode. Acta Physica Sinica, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [6] Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua. Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain. Acta Physica Sinica, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] Barrier Tunable Gallium oxide Schottky diode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211536
    [8] Long Ze, Xia Xiao-Chuan, Shi Jian-Jun, Liu Jun, Geng Xin-Lei, Zhang He-Zhi, Liang Hong-Wei. Temperature dependent characteristics of Ni/Au vertical Schottky diode based on mechanically exfoliated beta-Ga2O3 single crystal. Acta Physica Sinica, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [9] Guo Dao-You, Li Pei-Gang, Chen Zheng-Wei, Wu Zhen-Ping, Tang Wei-Hua. Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector. Acta Physica Sinica, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [10] Ma Hai-Lin, Su Qing. Effect of oxygen pressure on structure and optical band gap of gallium oxide thin films prepared by sputtering. Acta Physica Sinica, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [11] Pan Hui-Ping, Cheng Feng-Feng, Li Lin, Horng Ray-Hua, Yao Shu-De. Structrual analyses of Ga2+xO3-x thin films grown on sapphire substrates. Acta Physica Sinica, 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
    [12] Guo Hong-Li, Yang Huan-Yin, Tang Huan-Fang, Hou Hai-Jun, Zheng Yong-Lin, Zhu Jian-Guo. Effects of high pressure annealing technique on the structure, morphology and electric properties of 0.65PMN-0.35PT thin films. Acta Physica Sinica, 2013, 62(13): 130704. doi: 10.7498/aps.62.130704
    [13] Xie Jing, Li Bing, Li Yuan-Jie, Yan Pu, Feng Liang-Huan, Cai Ya-Ping, Zheng Jia-Gui, Zhang Jing-Quan, Li Wei, Wu Li-Li, Lei Zhi, Zeng Guang-Gen. Study of ZnS thin films prepared by RF magnetron sputtering technique. Acta Physica Sinica, 2010, 59(8): 5749-5754. doi: 10.7498/aps.59.5749
    [14] Li Yang-Ping, Liu Zheng-Tang. Plasma emission diagnostics for the optimization of deposition parameters in RF magnetron sputtering of GaP film. Acta Physica Sinica, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [15] Wang Zhen-Ning, Jiang Mei-Fu, Ning Zhao-Yuan, Zhu Li. Structure and photoluminescence of Zn2GeO4 polycrystalline films prepared by radio-frequency magnetron sputtering. Acta Physica Sinica, 2008, 57(10): 6507-6512. doi: 10.7498/aps.57.6507
    [16] Li Yang-Ping, Liu Zheng-Tang, Liu Wen-Ting, Yan Feng, Chen Jing. Preparation and properties of GeC thin films deposited by reactive RF magnetron sputtering. Acta Physica Sinica, 2008, 57(10): 6587-6592. doi: 10.7498/aps.57.6587
    [17] Li Yang-Ping, Liu Zheng-Tang, Zhao Hai-Long, Liu Wen-Ting, Yan Feng. RF magnetron sputtering of GaP thin film and computer simulation of its depositing process. Acta Physica Sinica, 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [18] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Effect of annealing on optical properties of MgxZn1-xO thin films deposited at low temperature. Acta Physica Sinica, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [19] Zhang Xi-Jian, Ma Hong-Lei, Wang Qing-Pu, Ma Jin, Zong Fu-Jian, Xiao Hong-Di, Ji Feng. Structural and optical properties of MgxZn1-xO thin films deposited by radio frequency magnetron sputtering. Acta Physica Sinica, 2005, 54(9): 4309-4312. doi: 10.7498/aps.54.4309
    [20] Wang Yu-Heng, Ma Jin, Ji Feng, Yu Xu-Hu, Zhang Xi-Jian, Ma Hong-Lei. Structural and photoluminescence characters of SnO22:Sb thin films pr epared by rf magnetron sputtering. Acta Physica Sinica, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
Metrics
  • Abstract views:  6089
  • PDF Downloads:  157
  • Cited By: 0
Publishing process
  • Received Date:  31 August 2022
  • Accepted Date:  11 October 2022
  • Available Online:  11 November 2022
  • Published Online:  20 January 2023

/

返回文章
返回
Baidu
map