Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation on the fusion reaction rate of deuterium and tritium under heterogeneous mixing

Shen Gang Zhong Bin Wu Yong Wang Jian-Guo

Citation:

Investigation on the fusion reaction rate of deuterium and tritium under heterogeneous mixing

Shen Gang, Zhong Bin, Wu Yong, Wang Jian-Guo
PDF
HTML
Get Citation
  • Mixing between shell material and gas fuel, caused by hydrodynamic instability, isolated defects, or kinetic effects, is the key to understand the degradation of implosion performance in the research of inertial confinement fusion. Understanding the mixing mechanism and reducing its impact is of extreme importance to achieve the ignition and high gain. The impact of mixing morphology on thermonuclear reaction rate in sub grid level has gradually attracted people’s attention in recent years due to its direct influence on burn rate and fusion process, the study on physical model of thermonuclear reaction rate in different mix morphology has important scientific significance and application value. In the paper, the dependence of thermonuclear reaction rate on mass distribution of different fuel concentrations at sub grid scale is derived. Based on thermodynamic equilibrium and ideal gas equation of state, the physical law of the evolution of the thermonuclear reaction rate with mix morphology under the dominance of diffusion mixing is revealed through analytical formula and numerical solution of diffusion equation in one-dimensional spherical geometry. It is convinced that the mixing amount directly affects the thermonuclear reaction rate by mainly affecting the volume fraction of the fuel, and the mixing diffusion time determined by heterogeneous mixing scale and diffusion coefficient directly affects the evolution behavior of the thermonuclear reaction rate. Furthermore, based on mutual diffusion coefficient obtained from direct simulation of diffusion process by Monte Carlo method, the difference of impact to thermonuclear reaction rate for low-Z Carbon and high-Z gold mixing is quantitatively investigated. Heterogeneous mix size with 0.1 μm, 0.01 μm respectively for the low-Z and high-Z mixing can be treated as atomic mix in burn rate aspect, and heterogeneous mix size with 10 μm, 1 μm respectively for the low-Z and high-Z mixing can be treated as ideal chunk mix in burn rate aspect, and heterogeneous mix size in the middle state needs to be evaluated by using the heterogeneous mixing model of thermonuclear reaction rate in the paper. Finally, the physical model is compared with 3D simulation results of the heterogeneous mixing effect experiment called “MARBLE Campaign” carried out on OMEGA laser facility, which is designed as a separated reactant experiments and capsules are filled with deuterated foam and HT gas pores of different size, covering typical mix morphology from atomic mix to chunk mix, which validate the reliability of the theoretical evaluation about the evolution of mixing morphology and its impact to thermonuclear reaction rate. This work is significant for the design and improvement of inertial confinement fusion mixing effect experiment in China.
      Corresponding author: Zhong Bin, zhong_bin@iapcm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant No. 11934004)
    [1]

    Cabot W H, Cook A W 2006 Nat. Phys. 2 562Google Scholar

    [2]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [3]

    Zhou Y 2017 Phys. Rep. 723-725 1Google Scholar

    [4]

    Orth C D 2016 Phys. Plasmas 23 022706Google Scholar

    [5]

    Weber C R, Clark D S, Pak A, Alfonso N, Bachmann B, Hopkins L F B, Bunn T, Crippen J, Divol L, Dittrich T, Kritcher A L, Landen O L, Le Pape B S, MacPhee A G, Marley E, Masse L P, Milovich J L, Nikroo A, Patel P K, Pickworth L A, Rice N, Smalyuk V A, Stadermann M 2020 Phys. Plasmas 27 032703Google Scholar

    [6]

    Hammel B A, Tommasini R, Clark D S, Field J, Stadermann M, Weber C 2016 J. Phys. Conf. Ser. 717 012021Google Scholar

    [7]

    Murphy T J, Douglas M R, Fincke J R, Olson R E, Cobble J A, Haines B M, Hamilton C E, Lee M N, Oertel J A, Parra-Vasquez N A G, Randolph R B, Schmidt D W, Shah R C, Smidt J M, Tregillis I L 2016 J. Phys. Conf. Ser. 717 012072Google Scholar

    [8]

    Murphy T J, Albright B J, Douglas M R, Cardenas T, Cooley J H, Day T H, Denissen N A, Gore R A, Gunderson M A, Haack J R, Haines B M, Hamilton C E, Hartouni E P, Kim Y, Kozlowski P M, Lee M N, Oertel J A, Olson R E, Yin L 2021 High Energy Density Phys. 38 100929Google Scholar

    [9]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C E, Henderson K C, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D W 2020 Nat. Commun. 11 544Google Scholar

    [10]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C, Henderson K, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D 2020 Phys. Plasmas 27 102701Google Scholar

    [11]

    Moses E I, Atherton J, Lagin L, Larson D, Keane C, MacGowan B, Patterson R, Spaeth M, Van Wonterghem B, Wegner P, Kauffman R 2016 J. Phys. Conf. Ser. 688 012073Google Scholar

    [12]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Bucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495Google Scholar

    [13]

    Pu Y D, Luo X, Zhang L, Sun C K, Hu Z M, Shen G, Wang X R, Tang Q, Yuan Z, Wang F, Yang D, Yang J M, Jiang S E, Ding Y K, Wang J G 2020 Phys. Rev. E 102 023204Google Scholar

    [14]

    Peng H, Zhang X M, Wei X, Zheng W, Jing F, Sui Z, Fan D, Lin Z 1999 Proc. SPIE 3492 25

    [15]

    Ristorcelli J R 2017 Phys. Fluids 29 020705Google Scholar

    [16]

    Cook A W, Riley J J 1994 Phys. Fluids 6 2868Google Scholar

    [17]

    Dimotakis P E 2005 Annu. Rev. Fluid Mech. 37 329Google Scholar

    [18]

    Girimaji S S 1991 Combust. Sci. Tech. 78 177Google Scholar

    [19]

    Ticknor C, Kress J D, Collins L A, Clérouin J, Arnault P, Decoster A 2016 Phys. Rev. E 93 063208Google Scholar

    [20]

    Molvig K, Simakov A N, Vold E L 2014 Phys. Plasmas 21 092709Google Scholar

    [21]

    Stanton L G, Murillo M S 2016 Phys. Rev. E 93 043203Google Scholar

    [22]

    White A J, Ticknor C, Meyer E R, Kress J D, Collins L A 2019 Phys. Rev. E 100 033213Google Scholar

    [23]

    查普曼 L, 考林 T G 著 (刘大有, 王伯懿 译) 1970 非均匀气体的数学理论 (北京: 科学出版社) 第137—139页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y) 1970 The Mathematical Theory of Non-uniform Gases (Beijing: Science Press) pp137–139 (in Chinese)

    [24]

    Brueckner K A, Jorna S 1974 Rev. Mod. Phys. 46 325Google Scholar

  • 图 1  不同混合形态下聚变燃料质量分布函数$ m(c) $的示意图 (a) 理想“颗粒”混合; (b) 非均匀混合; (c)均匀原子混合

    Figure 1.  Schematic diagram of fusion fuel mass distribution function $ m(c) $ under different mix morphology: (a) Ideal chunk mix; (b) heterogeneous mix; (c) homogeneous atomic mix

    图 2  不同参数β函数分布的m(c)及相应的热核反应速率修正因子 (a) 不同参数下的β函数分布; (b)相应修正因子η

    Figure 2.  m(c) taken as the distribution of β function with different parameters and corresponding correction factor of thermonuclear reaction rate: (a) β function distribution with different parameter; (b) corresponding η

    图 3  “颗粒”+氘氚小球系统互扩散过程示意图

    Figure 3.  Schematic diagram of mutual diffusion process of chunk+DT system

    图 4  热核反应速率修正因子数值解与解析解的比较

    Figure 4.  Comparison of numerical and analytical solutions for the correction factor of thermonuclear reaction rate

    图 5  跟踪样本离子扩散过程的示意图

    Figure 5.  Schematic diagram of tracking ion diffusion process

    图 6  蒙卡模拟的离子数密度分布随时间演化行为与扩散方程数值解的比较 (数值解的扩散系数为2243 $ {\rm{cm}}^2/{\rm{s}} $, 到心时间为0.9 ns)

    Figure 6.  Comparison between time evolution of ion number density distribution simulated by MC and numerical solution of diffusion equation. (diffusion coefficient of numerical solution is 2243$ {\rm{cm}}^2/{\rm{s}} $, time of diffusion to center is 0.9 ns)

    图 7  蒙卡模拟给出的氘自扩散系数与动理学理论的比较 (a) 随数密度的变化; (b) 随温度的变化

    Figure 7.  Comparison between self diffusion coefficient of deuterium given by MC simulation and kinectic theory: (a) With number density; (b) with temperature

    图 8  蒙卡模拟给出的互扩散系数与动理学公式的比较 (a) 氘与碳; (b) 氘与金

    Figure 8.  Comparison of the mutual diffusion coefficient between MC simulation and kinetic theories: (a) Carbon and deuterium; (b) gold and deuterium

    图 9  扩散混合下热核反应速率修正因子时间演化与平均燃料浓度的关系

    Figure 9.  Time evolution of thermonuclear reaction rate correction factor with different average fuel concentration under diffusion mixing

    图 10  热核反应速率修正因子时间演化与颗粒尺度的关系(取燃料平均浓度0.5, 扩散系数100$ {\rm{cm}}^2/{\rm{s}} $)

    Figure 10.  Time evolution of thermonuclear reaction rate correction factor with different chunk size under diffusion mixing

    图 11  颗粒尺度概率密度分布及不同分布下热核反应速率修正因子时间演化的差异

    Figure 11.  Time evolution of thermonuclear reaction rate correction factor with different chunk size distribution under diffusion mixing

    图 12  金颗粒 + 氘、碳颗粒 + 氘的热核反应速率修正因子时间演化的比较

    Figure 12.  Comparison of rate correction factors for gold + deuterium system and carbon + deuterium system

    图 13  初始不同气孔尺度靶丸聚变性能随聚变时间的变化及与Haines等[10]三维计算结果的比较

    Figure 13.  Fusion performance of different initial pore size with the fusion time and comparison with three dimensional result simulated by Haines et al.[10]

    Baidu
  • [1]

    Cabot W H, Cook A W 2006 Nat. Phys. 2 562Google Scholar

    [2]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [3]

    Zhou Y 2017 Phys. Rep. 723-725 1Google Scholar

    [4]

    Orth C D 2016 Phys. Plasmas 23 022706Google Scholar

    [5]

    Weber C R, Clark D S, Pak A, Alfonso N, Bachmann B, Hopkins L F B, Bunn T, Crippen J, Divol L, Dittrich T, Kritcher A L, Landen O L, Le Pape B S, MacPhee A G, Marley E, Masse L P, Milovich J L, Nikroo A, Patel P K, Pickworth L A, Rice N, Smalyuk V A, Stadermann M 2020 Phys. Plasmas 27 032703Google Scholar

    [6]

    Hammel B A, Tommasini R, Clark D S, Field J, Stadermann M, Weber C 2016 J. Phys. Conf. Ser. 717 012021Google Scholar

    [7]

    Murphy T J, Douglas M R, Fincke J R, Olson R E, Cobble J A, Haines B M, Hamilton C E, Lee M N, Oertel J A, Parra-Vasquez N A G, Randolph R B, Schmidt D W, Shah R C, Smidt J M, Tregillis I L 2016 J. Phys. Conf. Ser. 717 012072Google Scholar

    [8]

    Murphy T J, Albright B J, Douglas M R, Cardenas T, Cooley J H, Day T H, Denissen N A, Gore R A, Gunderson M A, Haack J R, Haines B M, Hamilton C E, Hartouni E P, Kim Y, Kozlowski P M, Lee M N, Oertel J A, Olson R E, Yin L 2021 High Energy Density Phys. 38 100929Google Scholar

    [9]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C E, Henderson K C, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D W 2020 Nat. Commun. 11 544Google Scholar

    [10]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C, Henderson K, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D 2020 Phys. Plasmas 27 102701Google Scholar

    [11]

    Moses E I, Atherton J, Lagin L, Larson D, Keane C, MacGowan B, Patterson R, Spaeth M, Van Wonterghem B, Wegner P, Kauffman R 2016 J. Phys. Conf. Ser. 688 012073Google Scholar

    [12]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Bucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495Google Scholar

    [13]

    Pu Y D, Luo X, Zhang L, Sun C K, Hu Z M, Shen G, Wang X R, Tang Q, Yuan Z, Wang F, Yang D, Yang J M, Jiang S E, Ding Y K, Wang J G 2020 Phys. Rev. E 102 023204Google Scholar

    [14]

    Peng H, Zhang X M, Wei X, Zheng W, Jing F, Sui Z, Fan D, Lin Z 1999 Proc. SPIE 3492 25

    [15]

    Ristorcelli J R 2017 Phys. Fluids 29 020705Google Scholar

    [16]

    Cook A W, Riley J J 1994 Phys. Fluids 6 2868Google Scholar

    [17]

    Dimotakis P E 2005 Annu. Rev. Fluid Mech. 37 329Google Scholar

    [18]

    Girimaji S S 1991 Combust. Sci. Tech. 78 177Google Scholar

    [19]

    Ticknor C, Kress J D, Collins L A, Clérouin J, Arnault P, Decoster A 2016 Phys. Rev. E 93 063208Google Scholar

    [20]

    Molvig K, Simakov A N, Vold E L 2014 Phys. Plasmas 21 092709Google Scholar

    [21]

    Stanton L G, Murillo M S 2016 Phys. Rev. E 93 043203Google Scholar

    [22]

    White A J, Ticknor C, Meyer E R, Kress J D, Collins L A 2019 Phys. Rev. E 100 033213Google Scholar

    [23]

    查普曼 L, 考林 T G 著 (刘大有, 王伯懿 译) 1970 非均匀气体的数学理论 (北京: 科学出版社) 第137—139页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y) 1970 The Mathematical Theory of Non-uniform Gases (Beijing: Science Press) pp137–139 (in Chinese)

    [24]

    Brueckner K A, Jorna S 1974 Rev. Mod. Phys. 46 325Google Scholar

  • [1] Li Chen-Pu, Wu Wei-Xia, Zhang Li-Gang, Hu Jin-Jiang, Xie Ge-Ying, Zheng Zhi-Gang. Separation of active chiral particles with different diffusion coefficients. Acta Physica Sinica, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] Liao Jing-Jing, Lin Fu-Jun. Diffusion and separation of binary mixtures of chiral active particles driven by time-delayed feedback. Acta Physica Sinica, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [3] Chu Shuo, Guo Chun-Wen, Wang Zhi-Jun, Li Jun-Jie, Wang Jin-Cheng. Effect of concentration-dependent diffusion coefficient on dendrite growth in directional solidification. Acta Physica Sinica, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [4] Zhang Zhen-Xia, Wang Chen-Yu, Li Qiang, Wu Shu-Gui. Relationship between the quasi-linear diffusion coefficients and the key parameters of spatial energetic electrons. Acta Physica Sinica, 2014, 63(7): 079401. doi: 10.7498/aps.63.079401
    [5] Fu Hong-Yang, Wen De-Hua, Yan Jing. Properties of rapidly rotating hybrid stars with non-Newtonian gravity. Acta Physica Sinica, 2012, 61(20): 209701. doi: 10.7498/aps.61.209701
    [6] Wang Zhen-Zhong, Wang Nan, Yao Wen-Jing. Effect of low diffusion coefficient on glass phase formation in Pd77Cu6Si17 alloy. Acta Physica Sinica, 2010, 59(10): 7431-7436. doi: 10.7498/aps.59.7431
    [7] Lü Yao-Ping, Gu Guo-Feng, Lu Hua-Chun, Dai Yu, Tang Guo-Ning. Refraction of reaction-diffusion plane wave for different diffusion coefficients. Acta Physica Sinica, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [8] Di Yao-Min, Hu Bao-Lin, Liu Dong-Dong, Yan Shi-Ming. Concurrence of the mixed state of two non-orthogonal pure states. Acta Physica Sinica, 2006, 55(8): 3869-3874. doi: 10.7498/aps.55.3869
    [9] LU YI-GANG, FENG JIN-YUAN, DONG YAN-WU, TONG JIE. THE TEMPERATURE COEFFICIENT OF ULTRASONIC VELOCITY (C/T)P IN ORGANIC LIQUID BINARY MIXTURES. Acta Physica Sinica, 1999, 48(11): 2082-2086. doi: 10.7498/aps.48.2082
    [10] LU YI-GANG, FENG JIN-YUAN, DONG YAN-WU, TONG JIE. THE PRESSURE COEFFICIENT OF ULTRASONIC VELOCITY (C/P)T IN ORGANIC LIQUID BINARY MIXTURES. Acta Physica Sinica, 1999, 48(11): 2087-2091. doi: 10.7498/aps.48.2087
    [11] LI ZI-RONG, MENG QING-AN, GUAN DI-HUA, WANG GANG. NMR STUDIES ON SELF DIFFUSION COEFFICIENTS OF LITHIUM IONS IN PAN-BASED GEL POLYMER ELECTROLYTES. Acta Physica Sinica, 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
    [12] TANG XIAO-MING, WEI SAI-ZHEN, MAO ZU-SUI, CHEN XIAO-FENG, ZHENG YONG-MIND. EFFECT OF LOCAL DIFFUSION COEFFICIENT VARIATION ON SUBMONOLAYER GROWTH. Acta Physica Sinica, 1999, 48(6): 1126-1131. doi: 10.7498/aps.48.1126
    [13] DU JIU-LIN. NONLINEAR ANALYSES OF THE CORE 3He NUCLEAR REACTION DIFFUSION SYSTEM. Acta Physica Sinica, 1998, 47(8): 1404-1408. doi: 10.7498/aps.47.1404
    [14] WANG GANG, YANG GUO-QUAN, GUAN DI-HUA, JIANG LI, PA SI-KUA-LI-MAO-LUO, PI SI TUO YAN-ZHAN FO LAN KE, JIE SI-SHENG. DIFFUSION COEFFICIENT MEASURED BY IMPEDANCE SPECTROSCOPY. Acta Physica Sinica, 1995, 44(12): 1964-1968. doi: 10.7498/aps.44.1964
    [15] ZHANG XI-QING, ZHAO JIA-LONG, QIN WEI-PING, DOU KAI, HUANG SHI-HUA. MEASUREMENT OF THE AMBIPOLAR DIFFUSION COEFFICIENT USING TIME-DELAYED FOUR-WAVE MIXING WITH INCOHERENT LIGHT. Acta Physica Sinica, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
    [16] LI ZHENG-YING. A SURVEY ON THE LIMITING BREAKDOWN STRENGTH AND ELECTRON ATTACHMENT RATE CONSTANTS IN ELECTRONEGATIVE GAS MIXTURES. Acta Physica Sinica, 1990, 39(9): 1400-1406. doi: 10.7498/aps.39.1400
    [17] CACULATION OF CONCENTRATION-DEPENDENT DIFFUSION COEFFICIENT---THE APPROXIMATION METHOD. Acta Physica Sinica, 1989, 38(8): 1329-1333. doi: 10.7498/aps.38.1329
    [18] HU XIAO-YONG, H. ITOH, N. IKUTA. DETERMINATION OF DIFFUSION COEFFICIENT AND QUENCHING RATE COEFFICIENT OF METASTABLE N2 MOLECULES N2(A3∑u+) USING TOWNSEND DISCHARGING. Acta Physica Sinica, 1989, 38(12): 2039-2043. doi: 10.7498/aps.38.2039
    [19] XU JIN-KUI. THE TOTAL YIELD AND ENERGY SPECTRA OF THE SECON-DARY PARTICLES OF THERMONUCLEAR REACTION. Acta Physica Sinica, 1980, 29(9): 1151-1157. doi: 10.7498/aps.29.1151
    [20] МЕТОД ЗФФЕКТА ХОЛЛА ОПРЕДЕЛЕНИИЮ ПОВЕРХНОСТНОЙ КОНЦЕНТРАЦИИ НА ДИФФУЗИОННОМ СЛОЕПЛУПРОВОД-НИКА,ГЛУБИНЫ ЭЛЕКТРОННО-ДЫРОЧНОГО ПЕРЕ-. Acta Physica Sinica, 1966, 22(8): 877-885. doi: 10.7498/aps.22.877
Metrics
  • Abstract views:  3255
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  17 June 2022
  • Accepted Date:  24 August 2022
  • Available Online:  21 December 2022
  • Published Online:  05 January 2023

/

返回文章
返回
Baidu
map