Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of integrated optical quantum computing

Zhou Wen-Hao Wang Yao Weng Wen-Kang Jin Xian-Min

Citation:

Research progress of integrated optical quantum computing

Zhou Wen-Hao, Wang Yao, Weng Wen-Kang, Jin Xian-Min
PDF
HTML
Get Citation
  • Quantum computing, based on the inherent superposition and entanglement properties of quantum states, can break through the limits of classical computing power. However, under the present technical conditions, the number of qubits that can be manipulated is still limited. In addition, the preparation of high-precision quantum gates and additional quantum error correction systems requires more auxiliary bits, which leads to extra cost. Therefore, it seems to be a long-term goal to realize a universal fault-tolerant quantum computer.The development of analog quantum computing is a transition path that can be used to simulate many-body physics problems. Quantum walk, as the quantum counterpart of classical random walks, is a research hotspot in analog quantum computing. Owing to the unique quantum superposition characteristics, quantum walk exhibits the ballistic transport properties of outward diffusion, so quantum walk provides acceleration in computing power for various algorithms. Based on quantum walk, different computing models are derived to deal with practical physical problems in different fields, such as biology, physics, economics, and computer science.A large number of technical routes are devoted to the experiments on realizing quantum walk, including optical fiber networks, superconducting systems, nuclear magnetic resonance systems, and trapped ion atom systems. Among these routes, photons are considered as the reliable information carriers in the experiments on quantum walking due to their controllability, long coherence time. and fast speed.Therefore, in this review, we focus on different quantum walk theories and experimental implementations in optical versions, such as traditional optical platforms, optical fiber platforms, and integrated optical quantum platform. In recent years, the rapid development of integrated optical quantum platforms has driven the experiments on quantum walk to move towards the stage of integration and miniaturization, and at the same time, the experimental scale and the number of qubits have gradually increased.To this end, we summarize the technological progress of integrated optical quantum computing, including various integrated optical quantum experimental platforms and their applications. Secondly, we specifically discuss the experiment on quantum walk and practical applications based on integrated optical quantum platforms. Finally, we briefly describe other quantum algorithms and corresponding experimental implementations.These quantum computing schemes provide computational speedups for specific physical problems. In the future, with the further development of integrated optical quantum technology, along with the increase in the number of controllable qubits and the realization of the supporting quantum error correction system, a larger-scale many-body physical system can be constructed to further expand these algorithms and move towards the field of optical quantum computing, a new stage.
      Corresponding author: Weng Wen-Kang, yung@sustech.edu.cn ; Jin Xian-Min, xianmin.jin@sjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFA0308700, 2019YFA0706302, 2017YFA0303700), the National Natural Science Foundation of China (Grant Nos. 11904229, 61734005, 11761141014, 11690033), the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 20JC1416300, 2019SHZDZX01), and the Shanghai Municipal Education Commission, China (Grant No. 2017-01-07-00-02-E00049).
    [1]

    Moore G E 1998 Proceedings of the IEEE 86 82Google Scholar

    [2]

    Feynman R P 1982 International Journal of Theoretical Physics 21 467Google Scholar

    [3]

    Shor P W 1994 In Proceedings 35 th Annual Symposium on Foundations of Computer Science Santa Fe, NM, USA, November 20–22, 1994 p124

    [4]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [5]

    Aaronson S, Gottesman D 2004 Physical Review A 70 052328Google Scholar

    [6]

    Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [7]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [8]

    Sarma S, Freedman M, Nayak C 2015 npj Quantum Inf. 1 15001Google Scholar

    [9]

    Liu Z H, Sun K, Pachos J K, Yang M, Meng Y, Liao Y W, Li Q, Wang J F, Luo Z Y, He Y F, Huang D Y, Ding G R, Xu J S, Han Y J, Li C F, Guo G C 2021 PRX Quantum 2 030323Google Scholar

    [10]

    DiVinzenzo D P 2001 Quant. Inf. Comp. 1 1Google Scholar

    [11]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [12]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [13]

    Preskill J 2018 Quantum 2 79Google Scholar

    [14]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [15]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [16]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 797Google Scholar

    [17]

    O’Brien J L, Pryde G J, White A G, Ralph T C, Branning D 2003 Nature 426 264Google Scholar

    [18]

    Pearson K 1905 Nature 72 294Google Scholar

    [19]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [20]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [21]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, San Diego, USA, June 9–11, 2003 p59

    [22]

    De Nicola F, Sansoni L, Crespi A, Ramponi R, Osellame R, Giovannetti V, Fazio R, Mataloni P, Sciarrino F 2014 Phys. Rev. A 89 032322Google Scholar

    [23]

    Peruzzo A, Lobino M, Matthews J C, et al. 2010 Science 329 1500Google Scholar

    [24]

    Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I, Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502Google Scholar

    [25]

    Defienne H, Barbieri M, Walmsley I A, Smith B J, Gigan S 2016 Sci. Adv. 2 e1501054Google Scholar

    [26]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [27]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316Google Scholar

    [28]

    Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174Google Scholar

    [29]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504Google Scholar

    [30]

    Roldán E, Soriano J C 2005 J. Mod. Opt. 52 2649Google Scholar

    [31]

    Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I, Silberhorn C 2012 Science 336 55Google Scholar

    [32]

    Politi A, Cryan M J, Rarity J G, Yu S, O'brien J L 2008 Science 320 646Google Scholar

    [33]

    Matthews J C, Politi A, Stefanov A, O'brien J L 2009 Nat. Photonics 3 346Google Scholar

    [34]

    Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C F, Thompson M G, O'Brien J L 2012 Nat. Photonics 6 45Google Scholar

    [35]

    Smith B J, Kundys D, Thomas-Peter N, Smith P G R, Walmsley I A 2009 Opt. Express 17 13516Google Scholar

    [36]

    Corrielli G, Crespi A, Geremia R, Ramponi R, Sansoni L, Santinelli A, Mataloni P, Sciarrino F, Osellame R 2014 Nat. Commun. 5 4249Google Scholar

    [37]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2010 Phys. Rev. Lett. 105 200503Google Scholar

    [38]

    Crespi A, Ramponi R, Osellame R, Sansoni L, Bongioanni I, Sciarrino F, Vallone G, Mataloni P 2011 Nat. Commun. 2 566Google Scholar

    [39]

    Carolan J, Harrold C, Sparrow C, et al. 2015 Science 349 711Google Scholar

    [40]

    Liou J C 2016 Comput. Mater. Sci. 122 30Google Scholar

    [41]

    Kawachi M 1990 Opt. Quantum Electron. 22 391Google Scholar

    [42]

    Szameit A, Nolte S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 163001Google Scholar

    [43]

    Kundys D O, Gates J C, Dasgupta S, Gawith C B E, Smith P G R 2009 IEEE Photonics Technol. Lett. 21 947Google Scholar

    [44]

    Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar

    [45]

    Harris N C, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C 2014 Phys. Rev. X 4 041047Google Scholar

    [46]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [47]

    Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar

    [48]

    Osellame R, Cerullo G, Ramponi R 2012 Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Berlin: Springer)

    [49]

    Jia Y, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar

    [50]

    Wei Q H, Dai H L, Shan H R, Li H G, Cao Z Q, Chen X F 2021 Phys. Rev. B 104 235308Google Scholar

    [51]

    Zhou J, Liang Y, Liu Z, Chu W, Zhang H, Yin D, Fang Z, Wu R, Zhang J, Chen W, Wang Z, Zhou Y, Wang M, Cheng Y 2021 Laser Photonics Rev. 15 2100030Google Scholar

    [52]

    Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B, Liu A Q 2021 AAPPS Bull. 31 15Google Scholar

    [53]

    Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R, Silberberg Y 2008 Phys. Rev. Lett. 100 170506Google Scholar

    [54]

    Harris N C, Steinbrecher G R, Prabhu M, Lahini Y, Mower J, Bunandar D, Chen C, Wong F N C, Baehr-Jones B, Hochberg M, Lloyd S, Englund D 2017 Nat. Photonics 11 447Google Scholar

    [55]

    Owens J O, Broome M A, Biggerstaff D N, Goggin M E, Fedrizzi A, Linjordet T, Ams M, Marshall G D, Twamley J, Withford M J, White A G 2011 New J. Phys. 13 075003Google Scholar

    [56]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [57]

    Poulios K, Keil R, Fry D, Meinecke J D, Matthews J C, Politi A, Lobino M, Gräfe M, Heinrich M, Nolte S, Szameit A, O’Brien J L 2014 Phys. Rev. Lett. 112 143604Google Scholar

    [58]

    Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 aat3174Google Scholar

    [59]

    Jiao Z Q, Gao J, Zhou W H, Wang X W, Ren R J, Xu X Y, Qiao L F, Wang Y, Jin X M 2021 Optica 8 1129Google Scholar

    [60]

    Ehrhardt M, Keil R, Maczewsky L J, Dittel C, Heinrich M, Szameit A 2021 Sci. Adv. 7 eabc5266Google Scholar

    [61]

    Childs A M, Goldstone J 2004 Phys. Rev. A 70 022314Google Scholar

    [62]

    Ambainis A 2003 Int. J. Quantum Inf. 1 507Google Scholar

    [63]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307Google Scholar

    [64]

    Franco C D, Gettrick M M, Busch T 2011 Phys. Rev. Lett. 106 080502Google Scholar

    [65]

    Kendon V M, Tamon C 2011 J. Comput. Theor. Nanosci. 8 422Google Scholar

    [66]

    Mohseni M, Rebentrost P, Lloyd S, Guzik A A 2008 J. Chem. Phys. 129 174106Google Scholar

    [67]

    Gamble J K, Friesen M, Zhou D, Joynt R, Coppersmith S N 2010 Phys. Rev. A. 81 052313Google Scholar

    [68]

    Childs A M 2009 Phys. Rev. Lett. 102 180501Google Scholar

    [69]

    Childs A M, Gosset D, Webb Z 2013 Science 339 791Google Scholar

    [70]

    Childs A M, Farhi E, Gutmann S 2002 Quantum Inf Process 1 35Google Scholar

    [71]

    Tang H, Di Franco C, Shi Z Y, He T S, Feng Z, Gao J, Sun K, Li Z M, Jiao Z Q, Wang T Y, Kim M S, Jin X M 2018 Nat. Photonics 12 754Google Scholar

    [72]

    Shi Z Y, Tang H, Feng Z, Wang Y, Li Z M, Gao J, Chang Y J, Wang T Y, Dou J P, Zhang Z Y, Jiao Z Q, Zhou W H, Jin X M 2020 Optica 7 613Google Scholar

    [73]

    Wang Y, Cui Z W, Lu Y H, Zhang X M, Gao J, Chang Y J, Yung M H, Jin X M 2020 Phys. Rev. Lett. 125 160502Google Scholar

    [74]

    Aaronson S, Arkhipov A 2011 Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing California, San Jose, USA, June 6–8, 2011 p333

    [75]

    Bentivegna M, Spagnolo N, Vitelli C, et al. 2015 Sci. Adv. 1 e1400255Google Scholar

    [76]

    Paesani S, Ding Y, Santagati R, Chakhmakhchyan L, Vigliar C, Rottwitt K, Oxenløwe L K, Wang J W, Thompson M G, Laing A 2019 Nat. Phys. 15 925Google Scholar

    [77]

    Zhou W H, Gao J, Jiao Z Q, Wang X W, Ren R J, Pang X L, Qiao L F, Zhang C N, Yang T H, Jin X M 2022 Appl. Phys. Rev. 9 031408Google Scholar

    [78]

    Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Renema J J, Lu C Y, Pan J W 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [79]

    Gao J, Wang X W, Zhou W H, Jiao Z Q, Ren R J, Fu Y X, Qiao L F, Xu X Y, Zhang C N, Pang X L, Li H, Wang Y, Jin X M 2022 Chip 1 100007Google Scholar

    [80]

    Madsen L S, Laudenbach F, Askarani M F, Rortais F, Vincent T, Bulmer J F, Miatto F M, Neuhaus L, Helt L G, Collins M J, Lita A E, Gerrits T, Nam S W, Vaidya V D, Menotti M, Dhand I, Vernon Z, Quesada N, Lavoie J 2022 Nature 606 75Google Scholar

    [81]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J J, Szameit A, Chen Z G, Segev M 2014 Nat. Mater. 13 57Google Scholar

    [82]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [83]

    Wang Y, Lu Y H, Mei F, Gao J, Li Z M, Tang H, Zhu S L, Jia S, Jin X M 2019 Phys. Rev. Lett. 122 193903Google Scholar

    [84]

    Wang Y, Pang X L, Lu Y H, Gao J, Chang Y J, Qiao L F, Jiao Z Q, Tang H, Jin X M 2019 Optica 6 955Google Scholar

    [85]

    Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022 Chip 1 100003Google Scholar

    [86]

    Blanco-Redondo A, Bell B, Oren D, Eggleton B J, Segev M 2018 Science 362 568Google Scholar

    [87]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [88]

    Tambasco J L, Corrielli G, Chapman R J, Crespi A, Zilberberg O, Osellame R, Peruzzo A 2018 Sci. Adv. 4 eaat3187Google Scholar

    [89]

    Wang M, Doyle C, Bell B, Collins M J, Magi E, Eggleton B J, Segev M, Blanco-Redondo A 2019 Nanophotonics 8 1327Google Scholar

    [90]

    Mittal S, Orre V V, Goldschmidt E A, Hafezi M 2021 Nat. Photonics 15 542Google Scholar

  • 图 1  (a)离散时间量子行走, 图片来自文献[22]; (b)连续时间量子行走, 图片来自文献[23]

    Figure 1.  (a) Discrete-time quantum walks, the picture is reproduced from the Ref. [22]; (b) continuous-time quantum walks, the picture is reproduced from the Ref. [23].

    图 2  不同的集成光量子平台 (a)硅基平台, 图片来自文献[40]; (b)硅基二氧化硅平台, 图片来自文献[41]; (c)飞秒激光直写平台, 图片来自文献[42]; (d) UV直写平台, 图片来自文献[43]

    Figure 2.  Different integrated optical quantum platforms: (a) Silicon-on-insulator platform, the picture is reproduced from the Ref. [40]; (b) silica-on-silicon platform, the picture is reproduced from the Ref. [41]; (c) femtosecond laser direct writing platform, the picture is reproduced from the Ref. [42]; (d) UV direct writing platform, the picture is reproduced from the Ref. [43].

    图 3  不同波导结构图 (a) 一维波导阵列, 图来自文献[53]; (b) 椭圆型波导阵列, 图来自文献[55]; (c) 三维波导结构, 图来自文献[56]; (d) “十字”波导阵列, 图来自文献[57].

    Figure 3.  Different waveguide structures: (a) One-dimensional waveguide array, the picture is reproduced from the Ref. [53]; (b) elliptical waveguide array, the picture is reproduced from the Ref. [55]; (c) three-dimensional waveguide structure, the picture is reproduced from the Ref. [56]; (d) “cross” waveguide array, the picture is reproduced from the Ref. [57].

    图 4  光子芯片上的二维量子行走. 图来自文献[58]

    Figure 4.  Two-dimensional quantum walks on a photonic chip, the picture is reproduced from the Ref. [58].

    图 5  关联光子对的二维量子行走. 图来自文献[59]

    Figure 5.  Two-dimensional quantum walks of correlated photons, the picture is reproduced from the Ref. [59].

    图 6  利用偏振作为额外的合成维度, 图来自文献[60]

    Figure 6.  Using polarization as an additional synthetic dimension. The picture is reproduced from the Ref. [60].

    图 7  量子行走用于模拟光合作用中的能量转移过程, 图来自文献[66]

    Figure 7.  Quantum walks in photosynthetic energy transfer, the picture is reproduced from the Ref. [66].

    图 8  与非逻辑树问题, 图来自文献[73]

    Figure 8.  Nand tree problem, the picture is reproduced from the Ref. [73].

    Baidu
  • [1]

    Moore G E 1998 Proceedings of the IEEE 86 82Google Scholar

    [2]

    Feynman R P 1982 International Journal of Theoretical Physics 21 467Google Scholar

    [3]

    Shor P W 1994 In Proceedings 35 th Annual Symposium on Foundations of Computer Science Santa Fe, NM, USA, November 20–22, 1994 p124

    [4]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [5]

    Aaronson S, Gottesman D 2004 Physical Review A 70 052328Google Scholar

    [6]

    Albash T, Lidar D A 2018 Rev. Mod. Phys. 90 015002Google Scholar

    [7]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [8]

    Sarma S, Freedman M, Nayak C 2015 npj Quantum Inf. 1 15001Google Scholar

    [9]

    Liu Z H, Sun K, Pachos J K, Yang M, Meng Y, Liao Y W, Li Q, Wang J F, Luo Z Y, He Y F, Huang D Y, Ding G R, Xu J S, Han Y J, Li C F, Guo G C 2021 PRX Quantum 2 030323Google Scholar

    [10]

    DiVinzenzo D P 2001 Quant. Inf. Comp. 1 1Google Scholar

    [11]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [12]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [13]

    Preskill J 2018 Quantum 2 79Google Scholar

    [14]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar

    [15]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [16]

    Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, Milburn G J 2007 Rev. Mod. Phys. 79 797Google Scholar

    [17]

    O’Brien J L, Pryde G J, White A G, Ralph T C, Branning D 2003 Nature 426 264Google Scholar

    [18]

    Pearson K 1905 Nature 72 294Google Scholar

    [19]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [20]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915Google Scholar

    [21]

    Childs A M, Cleve R, Deotto E, Farhi E, Gutmann S, Spielman D A 2003 Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, San Diego, USA, June 9–11, 2003 p59

    [22]

    De Nicola F, Sansoni L, Crespi A, Ramponi R, Osellame R, Giovannetti V, Fazio R, Mataloni P, Sciarrino F 2014 Phys. Rev. A 89 032322Google Scholar

    [23]

    Peruzzo A, Lobino M, Matthews J C, et al. 2010 Science 329 1500Google Scholar

    [24]

    Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I, Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502Google Scholar

    [25]

    Defienne H, Barbieri M, Walmsley I A, Smith B J, Gigan S 2016 Sci. Adv. 2 e1501054Google Scholar

    [26]

    Yan Z G, Zhang Y R, Gong M, Wu Y L, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L, Peng C Z, Xia K Y, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X B, Pan J W 2019 Science 364 753Google Scholar

    [27]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316Google Scholar

    [28]

    Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174Google Scholar

    [29]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504Google Scholar

    [30]

    Roldán E, Soriano J C 2005 J. Mod. Opt. 52 2649Google Scholar

    [31]

    Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I, Silberhorn C 2012 Science 336 55Google Scholar

    [32]

    Politi A, Cryan M J, Rarity J G, Yu S, O'brien J L 2008 Science 320 646Google Scholar

    [33]

    Matthews J C, Politi A, Stefanov A, O'brien J L 2009 Nat. Photonics 3 346Google Scholar

    [34]

    Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C F, Thompson M G, O'Brien J L 2012 Nat. Photonics 6 45Google Scholar

    [35]

    Smith B J, Kundys D, Thomas-Peter N, Smith P G R, Walmsley I A 2009 Opt. Express 17 13516Google Scholar

    [36]

    Corrielli G, Crespi A, Geremia R, Ramponi R, Sansoni L, Santinelli A, Mataloni P, Sciarrino F, Osellame R 2014 Nat. Commun. 5 4249Google Scholar

    [37]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2010 Phys. Rev. Lett. 105 200503Google Scholar

    [38]

    Crespi A, Ramponi R, Osellame R, Sansoni L, Bongioanni I, Sciarrino F, Vallone G, Mataloni P 2011 Nat. Commun. 2 566Google Scholar

    [39]

    Carolan J, Harrold C, Sparrow C, et al. 2015 Science 349 711Google Scholar

    [40]

    Liou J C 2016 Comput. Mater. Sci. 122 30Google Scholar

    [41]

    Kawachi M 1990 Opt. Quantum Electron. 22 391Google Scholar

    [42]

    Szameit A, Nolte S 2010 J. Phys. B: At. Mol. Opt. Phys. 43 163001Google Scholar

    [43]

    Kundys D O, Gates J C, Dasgupta S, Gawith C B E, Smith P G R 2009 IEEE Photonics Technol. Lett. 21 947Google Scholar

    [44]

    Xiong C, Pernice W, Ryu K K, Schuck C, Fong K Y, Palacios T, Tang H X 2011 Opt. Express 19 10462Google Scholar

    [45]

    Harris N C, Grassani D, Simbula A, Pant M, Galli M, Baehr-Jones T, Hochberg M, Englund D, Bajoni D, Galland C 2014 Phys. Rev. X 4 041047Google Scholar

    [46]

    Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R 2013 Nature 493 195Google Scholar

    [47]

    Davis K M, Miura K, Sugimoto N, Hirao K 1996 Opt. Lett. 21 1729Google Scholar

    [48]

    Osellame R, Cerullo G, Ramponi R 2012 Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Berlin: Springer)

    [49]

    Jia Y, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar

    [50]

    Wei Q H, Dai H L, Shan H R, Li H G, Cao Z Q, Chen X F 2021 Phys. Rev. B 104 235308Google Scholar

    [51]

    Zhou J, Liang Y, Liu Z, Chu W, Zhang H, Yin D, Fang Z, Wu R, Zhang J, Chen W, Wang Z, Zhou Y, Wang M, Cheng Y 2021 Laser Photonics Rev. 15 2100030Google Scholar

    [52]

    Kwek L C, Cao L, Luo W, Wang Y X, Sun S H, Wang X B, Liu A Q 2021 AAPPS Bull. 31 15Google Scholar

    [53]

    Perets H B, Lahini Y, Pozzi F, Sorel M, Morandotti R, Silberberg Y 2008 Phys. Rev. Lett. 100 170506Google Scholar

    [54]

    Harris N C, Steinbrecher G R, Prabhu M, Lahini Y, Mower J, Bunandar D, Chen C, Wong F N C, Baehr-Jones B, Hochberg M, Lloyd S, Englund D 2017 Nat. Photonics 11 447Google Scholar

    [55]

    Owens J O, Broome M A, Biggerstaff D N, Goggin M E, Fedrizzi A, Linjordet T, Ams M, Marshall G D, Twamley J, Withford M J, White A G 2011 New J. Phys. 13 075003Google Scholar

    [56]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502Google Scholar

    [57]

    Poulios K, Keil R, Fry D, Meinecke J D, Matthews J C, Politi A, Lobino M, Gräfe M, Heinrich M, Nolte S, Szameit A, O’Brien J L 2014 Phys. Rev. Lett. 112 143604Google Scholar

    [58]

    Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 aat3174Google Scholar

    [59]

    Jiao Z Q, Gao J, Zhou W H, Wang X W, Ren R J, Xu X Y, Qiao L F, Wang Y, Jin X M 2021 Optica 8 1129Google Scholar

    [60]

    Ehrhardt M, Keil R, Maczewsky L J, Dittel C, Heinrich M, Szameit A 2021 Sci. Adv. 7 eabc5266Google Scholar

    [61]

    Childs A M, Goldstone J 2004 Phys. Rev. A 70 022314Google Scholar

    [62]

    Ambainis A 2003 Int. J. Quantum Inf. 1 507Google Scholar

    [63]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307Google Scholar

    [64]

    Franco C D, Gettrick M M, Busch T 2011 Phys. Rev. Lett. 106 080502Google Scholar

    [65]

    Kendon V M, Tamon C 2011 J. Comput. Theor. Nanosci. 8 422Google Scholar

    [66]

    Mohseni M, Rebentrost P, Lloyd S, Guzik A A 2008 J. Chem. Phys. 129 174106Google Scholar

    [67]

    Gamble J K, Friesen M, Zhou D, Joynt R, Coppersmith S N 2010 Phys. Rev. A. 81 052313Google Scholar

    [68]

    Childs A M 2009 Phys. Rev. Lett. 102 180501Google Scholar

    [69]

    Childs A M, Gosset D, Webb Z 2013 Science 339 791Google Scholar

    [70]

    Childs A M, Farhi E, Gutmann S 2002 Quantum Inf Process 1 35Google Scholar

    [71]

    Tang H, Di Franco C, Shi Z Y, He T S, Feng Z, Gao J, Sun K, Li Z M, Jiao Z Q, Wang T Y, Kim M S, Jin X M 2018 Nat. Photonics 12 754Google Scholar

    [72]

    Shi Z Y, Tang H, Feng Z, Wang Y, Li Z M, Gao J, Chang Y J, Wang T Y, Dou J P, Zhang Z Y, Jiao Z Q, Zhou W H, Jin X M 2020 Optica 7 613Google Scholar

    [73]

    Wang Y, Cui Z W, Lu Y H, Zhang X M, Gao J, Chang Y J, Yung M H, Jin X M 2020 Phys. Rev. Lett. 125 160502Google Scholar

    [74]

    Aaronson S, Arkhipov A 2011 Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing California, San Jose, USA, June 6–8, 2011 p333

    [75]

    Bentivegna M, Spagnolo N, Vitelli C, et al. 2015 Sci. Adv. 1 e1400255Google Scholar

    [76]

    Paesani S, Ding Y, Santagati R, Chakhmakhchyan L, Vigliar C, Rottwitt K, Oxenløwe L K, Wang J W, Thompson M G, Laing A 2019 Nat. Phys. 15 925Google Scholar

    [77]

    Zhou W H, Gao J, Jiao Z Q, Wang X W, Ren R J, Pang X L, Qiao L F, Zhang C N, Yang T H, Jin X M 2022 Appl. Phys. Rev. 9 031408Google Scholar

    [78]

    Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Renema J J, Lu C Y, Pan J W 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [79]

    Gao J, Wang X W, Zhou W H, Jiao Z Q, Ren R J, Fu Y X, Qiao L F, Xu X Y, Zhang C N, Pang X L, Li H, Wang Y, Jin X M 2022 Chip 1 100007Google Scholar

    [80]

    Madsen L S, Laudenbach F, Askarani M F, Rortais F, Vincent T, Bulmer J F, Miatto F M, Neuhaus L, Helt L G, Collins M J, Lita A E, Gerrits T, Nam S W, Vaidya V D, Menotti M, Dhand I, Vernon Z, Quesada N, Lavoie J 2022 Nature 606 75Google Scholar

    [81]

    Plotnik Y, Rechtsman M C, Song D, Heinrich M, Zeuner J M, Nolte S, Lumer Y, Malkova N, Xu J J, Szameit A, Chen Z G, Segev M 2014 Nat. Mater. 13 57Google Scholar

    [82]

    Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A 2013 Nature 496 196Google Scholar

    [83]

    Wang Y, Lu Y H, Mei F, Gao J, Li Z M, Tang H, Zhu S L, Jia S, Jin X M 2019 Phys. Rev. Lett. 122 193903Google Scholar

    [84]

    Wang Y, Pang X L, Lu Y H, Gao J, Chang Y J, Qiao L F, Jiao Z Q, Tang H, Jin X M 2019 Optica 6 955Google Scholar

    [85]

    Wang Y, Lu Y H, Gao J, Chang Y J, Ren R J, Jiao Z Q, Zhang Z Y, Jin X M 2022 Chip 1 100003Google Scholar

    [86]

    Blanco-Redondo A, Bell B, Oren D, Eggleton B J, Segev M 2018 Science 362 568Google Scholar

    [87]

    Barik S, Karasahin A, Flower C, Cai T, Miyake H, DeGottardi W, Hafezi M, Waks E 2018 Science 359 666Google Scholar

    [88]

    Tambasco J L, Corrielli G, Chapman R J, Crespi A, Zilberberg O, Osellame R, Peruzzo A 2018 Sci. Adv. 4 eaat3187Google Scholar

    [89]

    Wang M, Doyle C, Bell B, Collins M J, Magi E, Eggleton B J, Segev M, Blanco-Redondo A 2019 Nanophotonics 8 1327Google Scholar

    [90]

    Mittal S, Orre V V, Goldschmidt E A, Hafezi M 2021 Nat. Photonics 15 542Google Scholar

  • [1] Huang Tian-Long, Wu Yong-Zheng, Ni Ming, Wang Shi, Ye Yong-Jin. Effects of quantum noise on Shor’s algorithm. Acta Physica Sinica, 2024, 73(5): 050301. doi: 10.7498/aps.73.20231414
    [2] Li Yan. Effects of long-range inter-particle interactions and isolated defect on quantum walks of two hard-core bosons in one-dimensional lattices. Acta Physica Sinica, 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [3] Li Tian-Yin, Xing Hong-Xi, Zhang Dan-Bo. Quantum computing based high-energy nuclear physics. Acta Physica Sinica, 2023, 72(20): 200303. doi: 10.7498/aps.72.20230907
    [4] Liu Han-Yang, Hua Nan, Wang Yi-Nuo, Liang Jun-Qing, Ma Hong-Yang. Three dimensional image encryption algorithm based on quantum random walk and multidimensional chaos. Acta Physica Sinica, 2022, 71(17): 170303. doi: 10.7498/aps.71.20220466
    [5] Jiang Yao-Yao, Zhang Wen-Bin, Chu Peng-Cheng, Ma Hong-Yang. Feedback search algorithm for multi-particle quantum walks over a ring based on permutation groups. Acta Physica Sinica, 2022, 71(3): 030201. doi: 10.7498/aps.71.20211000
    [6] Wang Yi-Nuo, Song Zhao-Yang, Ma Yu-Lin, Hua Nan, Ma Hong-Yang. Color image encryption algorithm based on DNA code and alternating quantum random walk. Acta Physica Sinica, 2021, 70(23): 230302. doi: 10.7498/aps.70.20211255
    [7] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [8] Li Ying, Han Ze-Yao, Li Chao-Jian, Lü Jin, Yuan Xiao, Wu Bu-Jiao. Review on quantum advantages of sampling problems. Acta Physica Sinica, 2021, 70(21): 210201. doi: 10.7498/aps.70.20211428
    [9] Tian Yu-Ling, Feng Tian-Feng, Zhou Xiao-Qi. Collaborative quantum computation with redundant graph state. Acta Physica Sinica, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [10] Yang Le, Li Kai, Dai Hong-Yi, Zhang Ming. A novel scheme of quantum state tomography based on quantum algorithms. Acta Physica Sinica, 2019, 68(14): 140301. doi: 10.7498/aps.68.20190157
    [11] An Zhi-Yun, Li Zhi-Jian. Properties of distribution and entanglement in discrete-time quantum walk with percolation. Acta Physica Sinica, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [12] Xue Xi-Ling, Chen Han-Wu, Liu Zhi-Hao, Zhang Bin-Bin. Search algorithm of structure anomalies in complete graph based on scattering quantum walk. Acta Physica Sinica, 2016, 65(8): 080302. doi: 10.7498/aps.65.080302
    [13] Wang Wen-Juan, Tong Pei-Qing. Dynamic behaviors of spreading in generalized Fibonacci time quasiperiodic quantum walks. Acta Physica Sinica, 2016, 65(16): 160501. doi: 10.7498/aps.65.160501
    [14] Wang Dan-Dan, Li Zhi-Jian. Resonance transmission of one-dimensional quantum walk with phase defects. Acta Physica Sinica, 2016, 65(6): 060301. doi: 10.7498/aps.65.060301
    [15] Chen Han-Wu, Li Ke, Zhao Sheng-Mei. Quantum walk search algorithm based on phase matching and circuit cmplementation. Acta Physica Sinica, 2015, 64(24): 240301. doi: 10.7498/aps.64.240301
    [16] Liu Yan-Mei, Chen Han-Wu, Liu Zhi-Hao, Xue Xi-Ling, Zhu Wan-Ning. Scattering quantum walk search algorithm on star graph. Acta Physica Sinica, 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [17] Ren Chun-Nian, Shi Peng, Liu Kai, Li Wen-Dong, Zhao Jie, Gu Yong-Jian. Effects of initial states on continuous-time quantum walk in the optical waveguide array. Acta Physica Sinica, 2013, 62(9): 090301. doi: 10.7498/aps.62.090301
    [18] Feng MingMing, Qin XiaoLin, Zhou ChunYuan, Xiong Li, Ding LiangEn. Quantum random number generator based on polarization. Acta Physica Sinica, 2003, 52(1): 72-76. doi: 10.7498/aps.52.72
    [19] LIAO JING, LIANG CHUANG, WEI YA-JUN, WU LING-AN, PAN SHAO-HUA, YAO DE-CHENG. TRUE RANDOM NUMBER GENERATOR BASED ON A PHOTON BEAMSPLITTER. Acta Physica Sinica, 2001, 50(3): 467-472. doi: 10.7498/aps.50.467
    [20] WANG CHIH-CHIANG. THE RUBY OPTICAL MASER. Acta Physica Sinica, 1964, 20(1): 63-71. doi: 10.7498/aps.20.63
Metrics
  • Abstract views:  7303
  • PDF Downloads:  420
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2022
  • Accepted Date:  11 October 2022
  • Available Online:  21 October 2022
  • Published Online:  24 December 2022

/

返回文章
返回
Baidu
map