Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Properties of distribution and entanglement in discrete-time quantum walk with percolation

An Zhi-Yun Li Zhi-Jian

Citation:

Properties of distribution and entanglement in discrete-time quantum walk with percolation

An Zhi-Yun, Li Zhi-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We investigate one-dimensional discrete-time quantum walk on the line where the links between neighboring sites are randomly broken. Two link-broken ways, static percolation and dynamical percolation, are considered. The former means that the broken links are fixed in position space at each time step, while the latter is that broken links are varied with time step. Our attention focuses on the effects of these disorders on two physical quantities, the probability distribution and the entanglement between the coin degree of freedom and position degree of freedom. Choosing Hadamard coin operator and assuming the walker to start from the position eigenstate|0〉and attach itself to a coherent coin state 1/√2 (|↑〉+ i|↓〉), we give the statistical average results after making numerical calculations many times. The choices of coin operator and initial state, resulting in a symmetric probability distribution about origin in the ideal case, is helpful in comparing with different cases in different disorder strengths. It is shown that the probability distribution of static percolation quantum walk can change from a coherent behavior at short time to Anderson localization at longer time, while the dynamical percolation quantum walk can change to a classical diffusive behavior. With the decrease of the percolation probability, these transitions become faster. The entanglement for ideal case without disorder reaches a constant value after a short time evolution. The static percolation makes the entanglement less than that of ideal case and fluctuate irregularly around a certain value. The situation is very different for the dynamical percolation:the entanglement increases smoothly with the time step and can exceed the constant value in the ideal case at some time. Both of entanglements for two types of percolations decrease with reducing percolation probability. As a striking characteristic, the entanglement in dynamical case can tend to maximum regardless of percolation probability in long time limit, while the static case cannot. In the model for our study, the randomized unitary operations, induced by the static and dynamical percolations, can lead to some noticeable effects on the transport and entanglement of discrete time quantum walk. The results about the interplay between disorder and entanglement not only assist quantum information processing, but also give more options to further explore and understand disorder physical processes in nature.
      Corresponding author: Li Zhi-Jian, zjli@sxu.edu.cn
    • Funds: Project supported by Shanxi Scholarship Council of China (Grant No.2015-012),and Natural Science Foundation of Shanxi Province,China (Grant No.201601D011009).
    [1]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [2]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687

    [3]

    Chandrashekar C M 2013 Sci. Rep. 3 2829

    [4]

    Kempe J 2003 Contemp. Phys. 44 307

    [5]

    Zaburdaev V, Denisov S, Klafter J 2015 Rev. Mod. Phys. 87 483

    [6]

    Ambainis A 2003 Int. J. Quantum Inf. 1 507518

    [7]

    Childs A M, Gosset D, Webb Z 2013 Science 339 791

    [8]

    Du J, Li H, Xu X, Shi M, Wu J, Zhou X, Han R 2003 Phys. Rev. A 67 042316

    [9]

    Schmitz H, Matjeschk R, Schneider Ch, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [10]

    Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174

    [11]

    Xue P, Qin H, Tang B, Zhan X, Bian Z H, Li J 2014 Chin. Phys. B 23 110307

    [12]

    Engel G S, Calhoun T R, Read E L 2007 Nature 446 782

    [13]

    Chandrashekar C M 2011 Phys. Rev. A 83 022320

    [14]

    Kitagawa T, Rudner M S, Berg E 2010 Phys. Rev. A 82 033429

    [15]

    Beggi A, Buscemi F, Bordone P 2016 Quantum Inf. Process. 15 3711

    [16]

    Li Z J, Wang J B 2015 Sci. Rep. 5 13585

    [17]

    Wang L, Wang L, Zhang Y 2014 Phys. Rev. A 90 063618

    [18]

    Wang Q H, Li Z J 2016 Ann. Phys. 373 1

    [19]

    Di Franco C, Mc Gettrick M, Busch T 2011 Phys. Rev. Lett. 106 080502

    [20]

    Goyal S K, Chandrashekar C M 2010 J. Phys. A:Math. Theor. 43 235303

    [21]

    Carneiro I, Loo M, Xu X 2005 New J. Phys. 7 156

    [22]

    Vieira R, Amorim E P M, Rigolin G 2014 Phys. Rev. A 89 042307

    [23]

    Vieira R, Amorim E P M, Rigolin G 2013 Phys. Rev. Lett. 111 180503

    [24]

    Chandrashekar C M 2012 arXiv:12125984v1

    [25]

    Li Z J, Izaac J A, Wang J B 2013 Phys. Rev. A 87 012314

    [26]

    Yin Y, Katsanos D E, Evangelou S N 2008 Phys. Rev. A 77 022302

    [27]

    Schreiber A, Cassemiro K N, Potocek V, Gabris A, Jex I, Silberhorn C 2011 Phys. Rev. Lett. 106 180403

    [28]

    Törmä P, Jex I, Schleich W P 2002 Phys. Rev. A 65 052110

    [29]

    Chou C I, Ho C L 2014 Chin. Phys. B 23 110302

    [30]

    Wang D D, Li Z J 2016 Acta Phys. Sin. 65 060301 (in Chinese)[王丹丹, 李志坚 2016 65 060301]

    [31]

    Lam H T, Szeto K Y 2015 Phys. Rev. A 92 012323

    [32]

    Bennett C H, Bernstein H J, Popescu S 1996 Phys. Rev. A 53 2046

  • [1]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [2]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687

    [3]

    Chandrashekar C M 2013 Sci. Rep. 3 2829

    [4]

    Kempe J 2003 Contemp. Phys. 44 307

    [5]

    Zaburdaev V, Denisov S, Klafter J 2015 Rev. Mod. Phys. 87 483

    [6]

    Ambainis A 2003 Int. J. Quantum Inf. 1 507518

    [7]

    Childs A M, Gosset D, Webb Z 2013 Science 339 791

    [8]

    Du J, Li H, Xu X, Shi M, Wu J, Zhou X, Han R 2003 Phys. Rev. A 67 042316

    [9]

    Schmitz H, Matjeschk R, Schneider Ch, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [10]

    Karski M, Forster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325 174

    [11]

    Xue P, Qin H, Tang B, Zhan X, Bian Z H, Li J 2014 Chin. Phys. B 23 110307

    [12]

    Engel G S, Calhoun T R, Read E L 2007 Nature 446 782

    [13]

    Chandrashekar C M 2011 Phys. Rev. A 83 022320

    [14]

    Kitagawa T, Rudner M S, Berg E 2010 Phys. Rev. A 82 033429

    [15]

    Beggi A, Buscemi F, Bordone P 2016 Quantum Inf. Process. 15 3711

    [16]

    Li Z J, Wang J B 2015 Sci. Rep. 5 13585

    [17]

    Wang L, Wang L, Zhang Y 2014 Phys. Rev. A 90 063618

    [18]

    Wang Q H, Li Z J 2016 Ann. Phys. 373 1

    [19]

    Di Franco C, Mc Gettrick M, Busch T 2011 Phys. Rev. Lett. 106 080502

    [20]

    Goyal S K, Chandrashekar C M 2010 J. Phys. A:Math. Theor. 43 235303

    [21]

    Carneiro I, Loo M, Xu X 2005 New J. Phys. 7 156

    [22]

    Vieira R, Amorim E P M, Rigolin G 2014 Phys. Rev. A 89 042307

    [23]

    Vieira R, Amorim E P M, Rigolin G 2013 Phys. Rev. Lett. 111 180503

    [24]

    Chandrashekar C M 2012 arXiv:12125984v1

    [25]

    Li Z J, Izaac J A, Wang J B 2013 Phys. Rev. A 87 012314

    [26]

    Yin Y, Katsanos D E, Evangelou S N 2008 Phys. Rev. A 77 022302

    [27]

    Schreiber A, Cassemiro K N, Potocek V, Gabris A, Jex I, Silberhorn C 2011 Phys. Rev. Lett. 106 180403

    [28]

    Törmä P, Jex I, Schleich W P 2002 Phys. Rev. A 65 052110

    [29]

    Chou C I, Ho C L 2014 Chin. Phys. B 23 110302

    [30]

    Wang D D, Li Z J 2016 Acta Phys. Sin. 65 060301 (in Chinese)[王丹丹, 李志坚 2016 65 060301]

    [31]

    Lam H T, Szeto K Y 2015 Phys. Rev. A 92 012323

    [32]

    Bennett C H, Bernstein H J, Popescu S 1996 Phys. Rev. A 53 2046

  • [1] Chen Feng, Ren Gang. Analysis of quantum properties of two-mode coupled harmonic oscillator based on entangled state representation. Acta Physica Sinica, 2024, 73(23): 230302. doi: 10.7498/aps.73.20241303
    [2] Bai Jian-Nan, Han Song, Chen Jian-Di, Han Hai-Yan, Yan Dong. Correlated collective excitation and quantum entanglement between two Rydberg superatoms in steady state. Acta Physica Sinica, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [3] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, 2022, 71(8): 080301. doi: 10.7498/aps.71.20220360
    [4] Song Yue, Li Jun-Qi, Liang Jiu-Qing. Dynamics of quantum correlation for three qubits in hierarchical environment. Acta Physica Sinica, 2021, 70(10): 100301. doi: 10.7498/aps.70.20202133
    [5] Zhang Shi-Hao, Zhang Xiang-Dong, Li Lü-Zhou. Research progress of measurement-based quantum computation. Acta Physica Sinica, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [6] Zhong Yin-Yin, Pan Xiao-Zhou, Jing Jie-Tai. Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Acta Physica Sinica, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [7] Ren Zhi-Hong, Li Yan, Li Yan-Na, Li Wei-Dong. Development on quantum metrology with quantum Fisher information. Acta Physica Sinica, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [8] Yang Rong-Guo, Zhang Chao-Xia, Li Ni, Zhang Jing, Gao Jiang-Rui. Quantum manipulation of entanglement enhancement in cascaded four-wave-mixing process. Acta Physica Sinica, 2019, 68(9): 094205. doi: 10.7498/aps.68.20181837
    [9] Li Xue-Qin, Zhao Yun-Fang, Tang Yan-Ni, Yang Wei-Jun. Entanglement of quantum node based on hybrid system of diamond nitrogen-vacancy center spin ensembles and superconducting quantum circuits. Acta Physica Sinica, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [10] Wang Can-Can. Quantum entanglement and cosmological Friedmann equations. Acta Physica Sinica, 2018, 67(17): 179501. doi: 10.7498/aps.67.20180813
    [11] Su Yao-Heng, Chen Ai-Min, Wang Hong-Lei, Xiang Chun-Huan. Quantum entanglement and critical exponents in one-dimensional spin-1 bond-alternating XXZ chains. Acta Physica Sinica, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [12] Cong Mei-Yan, Yang Jing, Huang Yan-Xia. Effects of Dzyaloshinskii-Moriya interacton and decoherence on entanglement dynamics in Heisenberg spin chain system with different initial states. Acta Physica Sinica, 2016, 65(17): 170301. doi: 10.7498/aps.65.170301
    [13] Xia Jian-Ping, Ren Xue-Zao, Cong Hong-Lu, Wang Xu-Wen, He Shu. Quantum evolution of entanglement property in two-qubit and oscillator coupling system. Acta Physica Sinica, 2012, 61(1): 014208. doi: 10.7498/aps.61.014208
    [14] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [15] Liu Sheng-Xin, Li Sha-Sha, Kong Xiang-Mu. The effect of Dzyaloshinskii-Moriya interaction on entanglement in one-dimensional XY spin model. Acta Physica Sinica, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [16] Chen Yu, Zou Jian, Li Jun-Gang, Shao Bin. Controlling the entanglement among three atoms by quantum-jump-based feedback. Acta Physica Sinica, 2010, 59(12): 8365-8370. doi: 10.7498/aps.59.8365
    [17] Zhou Nan-Run, Zeng Bin-Yang, Wang Li-Jun, Gong Li-Hua. Selective automatic repeat quantum synchronous communication protocol based on quantum entanglement. Acta Physica Sinica, 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [18] Yao Zhi-Xin, Zhong Jian-Wei, Mao Bang-Ning, Chen Gang, Pan Bai-Liang. Quantum description of interference effect with two holes. Acta Physica Sinica, 2007, 56(6): 3185-3191. doi: 10.7498/aps.56.3185
    [19] Hu Yao-Hua, Fang Mao-Fa, Liao Xiang-Ping, Zheng Xiao-Juan. Quantum entanglement of the binomial field interacting with a cascade three-level atom. Acta Physica Sinica, 2006, 55(9): 4631-4637. doi: 10.7498/aps.55.4631
    [20] Wang Cheng-Zhi, Fang Miao-Fa. . Acta Physica Sinica, 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
Metrics
  • Abstract views:  5799
  • PDF Downloads:  201
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2016
  • Accepted Date:  01 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回
Baidu
map