搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

广义Fibonacci时间准周期量子行走波包扩散的动力学特性

王文娟 童培庆

引用本文:
Citation:

广义Fibonacci时间准周期量子行走波包扩散的动力学特性

王文娟, 童培庆

Dynamic behaviors of spreading in generalized Fibonacci time quasiperiodic quantum walks

Wang Wen-Juan, Tong Pei-Qing
PDF
导出引用
  • 本文通过数值计算的方法研究了一维离散时间准周期量子行走的动力学特性,主要研究了两个自旋空间C算符按照广义Fibonacci准周期排列的量子行走,发现对两类广义Fibonacci准周期序列,波包扩散都是超扩散(即标准方差约为t,0.5 1),而且在给定的两个C算符下,第二类广义Fibonacci准周期序列的幂指数 大于第一类广义Fibonacci准周期序列. 通过对波包扩散的概率分布情形和标准方差的研究发现,第一类广义Fibonacci准周期序列的波包扩散更接近于经典随机行走(=0.5),而第二类广义Fibonacci准周期序列的波包扩散更接近于均匀量子行走(=1),这与两类广义Fibonacci准周期量子自旋链中量子相变时的特性相反.
    Quantum walk (QW), the quantum mechanical counterpart of classical random walk, has recently been studied in various fields. The evolution of the discrete time quantum walk can be described as follows: the walker changes its spin state by the coin operator C, then takes one step left or right according to its spin state. For homogeneous quantum walk, the coin operator is independent of time and the standard deviation of the position grows linearly in time. It is quadratically faster than that in the classical random walk. In this work, we numerically study the dynamical behaviors of spreading in a one-dimensional discrete time quasiperiodic quantum walk (DTQQW). The DTQQW is that the coin operator is dependent on time and takes two different coins C() and C() arranged in generalized Fibonacci (GF) sequences. The GF sequences are constructed from A by the recursion relation: AAmBn, BA, for m, n are positive integers. They can be classified into two classes according to the wandering exponent . For 0, they belong to the first class, and for 0, they belong to the second class. For one dimensional system, the behaviors of two classes of GF systems are different either for the electronic spectrum of an electron in quasiperiodic potentials or for the quantum phase transitions of the quasiperiodic spin chains. In this paper, we discuss the cases of two different C operators (C();C()) arranged in GF sequences and find that the spreading behaviors are superdiffusion (the standard deviation of the position ~t; 0:5 1) for the two classes of GF DTQQW. For the second class of GF DTQQW, the exponent values are larger than those of the first class of GF DTQQW in the case of two identical C operators. By exploring the probability distribution in the real space, we find that for the first class of GF DTQQW, the probability distributions are almost the same for different initial states and are similar to the classical Gaussian distribution. For the probability distributions of the second class of GF DTQQW, there are two peaks at the two edges and the height of the two peaks can be different for different initial states. They are similar to the ballistic distribution of the homogeneous quantum walk. Therefore, we conclude that for the first class of GF DTQQW, the spreading behaviors are close to those of the classical random walk ( = 0:5) while for the second class of GF DTQQW, they are close to those of the homogeneous quantum walk ( = 1). This result is quite different from the characteristics of the quantum phase transitions in two classes of GF quasiperiodic quantum spin chains.
      通信作者: 童培庆, pqtong@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11175087,11575087)资助的课题.
      Corresponding author: Tong Pei-Qing, pqtong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175087, 11575087).
    [1]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 2

    [2]

    Kempe J 2003 Contemp. Phys. 44 307

    [3]

    Childs A M, Farhi V, Gutmann S 2002 Quantum Inf. Process. 1 35

    [4]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015

    [5]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307

    [6]

    Oka T, Konno N, Arita R, Aoki H 2005 Phys. Rev. Lett. 94 100602

    [7]

    Chandrashekar C M, Laflamme R 2008 Phys. Rev. A 78 022314

    [8]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [9]

    Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos C F 2010 Phys. Rev. Lett. 104 100503

    [10]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [11]

    Dur W, Raussendorf R, Kendon V M, Briegel H J 2002 Phys. Rev. A 66 052319

    [12]

    Ma Z Y, Burnett K, d’Arcy M B, Gardiner S A 2006 Phys. Rev. A 73 013401

    [13]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310

    [14]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316

    [15]

    Chandrashekar C M 2006 Phys. Rev. A 74 032307

    [16]

    Ryan C A, Laforest M, Boileau J C, Laflamme R 2005 Phys. Rev. A 72 062317

    [17]

    Eckert K, Mompart J, Birkl G, Lewenstein M 2005 Phys. Rev. A 72 012327

    [18]

    Manouchehri K, Wang J B 2008 J. Phys. A 41 065304

    [19]

    Xue P, Sanders C B, Leibfried D 2009 Phys. Rev. Lett. 103 183602

    [20]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [21]

    Nayak A, Vishwanath A 2000 arXiv: 0010117v1 [quant-ph]

    [22]

    Bednarska M, Grudka A, Kurzynski P, Luczak T, Wojcik A 2003 Phys. Lett. A 317 21

    [23]

    Xu X P 2010 Eur. Phys. J. B 77 479

    [24]

    Marquezino F L, Portugal R, Abal G, Donangelo R 2008 Phys. Rev. A 77 042312

    [25]

    Ribeiro P, Milman P, Mosseri R 2004 Phys. Rev. Lett. 93 190503

    [26]

    Zhang R, Xu Y Q, Xue P 2015 Chin. Phys. B 24 010303

    [27]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 110312

    [28]

    Li M, Zhang Y S, Guo G C 2013 Chin. Phys. Lett. 2 020304

    [29]

    Xu X P, Liu F 2008 Phys. Rev. A 77 062318

    [30]

    Zhao J, Hu Y Y, Tong P Q 2015 Chin. Phys. Lett. 32 060501

    [31]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [32]

    Levine D, Steinhardt P J 1984 Phys. Rev. Lett. 53 2477

    [33]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [34]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [35]

    Kolár M, Ali M K, Nori F 1991 Phys. Rev. B 43 1034

    [36]

    Dulea M, Severin M, Riklund R 1990 Phys. Rev. B 42 3680

    [37]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [38]

    Larcher M, Laptyeva T V, Bodyfelt J D, Dalfovo F, Modugno M, Flach S 2012 New J. Phys. 14 103036

    [39]

    Zhang Z J, Tong P Q, Gong J B, Li B W 2012 Phys. Rev. Lett. 108 070603

    [40]

    Zhang Z J, Li W J, Zhu X, Xiong Y, Tong P Q 2015 Acta Phys. Sin. 64 190501 (in Chinese) [张振俊, 李文娟, 朱璇, 熊烨, 童培庆 2015 64 190501]

    [41]

    Luck J M 1993 J. Stat. Phys. 72 417

  • [1]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 2

    [2]

    Kempe J 2003 Contemp. Phys. 44 307

    [3]

    Childs A M, Farhi V, Gutmann S 2002 Quantum Inf. Process. 1 35

    [4]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015

    [5]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307

    [6]

    Oka T, Konno N, Arita R, Aoki H 2005 Phys. Rev. Lett. 94 100602

    [7]

    Chandrashekar C M, Laflamme R 2008 Phys. Rev. A 78 022314

    [8]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [9]

    Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos C F 2010 Phys. Rev. Lett. 104 100503

    [10]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [11]

    Dur W, Raussendorf R, Kendon V M, Briegel H J 2002 Phys. Rev. A 66 052319

    [12]

    Ma Z Y, Burnett K, d’Arcy M B, Gardiner S A 2006 Phys. Rev. A 73 013401

    [13]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310

    [14]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316

    [15]

    Chandrashekar C M 2006 Phys. Rev. A 74 032307

    [16]

    Ryan C A, Laforest M, Boileau J C, Laflamme R 2005 Phys. Rev. A 72 062317

    [17]

    Eckert K, Mompart J, Birkl G, Lewenstein M 2005 Phys. Rev. A 72 012327

    [18]

    Manouchehri K, Wang J B 2008 J. Phys. A 41 065304

    [19]

    Xue P, Sanders C B, Leibfried D 2009 Phys. Rev. Lett. 103 183602

    [20]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [21]

    Nayak A, Vishwanath A 2000 arXiv: 0010117v1 [quant-ph]

    [22]

    Bednarska M, Grudka A, Kurzynski P, Luczak T, Wojcik A 2003 Phys. Lett. A 317 21

    [23]

    Xu X P 2010 Eur. Phys. J. B 77 479

    [24]

    Marquezino F L, Portugal R, Abal G, Donangelo R 2008 Phys. Rev. A 77 042312

    [25]

    Ribeiro P, Milman P, Mosseri R 2004 Phys. Rev. Lett. 93 190503

    [26]

    Zhang R, Xu Y Q, Xue P 2015 Chin. Phys. B 24 010303

    [27]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 110312

    [28]

    Li M, Zhang Y S, Guo G C 2013 Chin. Phys. Lett. 2 020304

    [29]

    Xu X P, Liu F 2008 Phys. Rev. A 77 062318

    [30]

    Zhao J, Hu Y Y, Tong P Q 2015 Chin. Phys. Lett. 32 060501

    [31]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [32]

    Levine D, Steinhardt P J 1984 Phys. Rev. Lett. 53 2477

    [33]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [34]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [35]

    Kolár M, Ali M K, Nori F 1991 Phys. Rev. B 43 1034

    [36]

    Dulea M, Severin M, Riklund R 1990 Phys. Rev. B 42 3680

    [37]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [38]

    Larcher M, Laptyeva T V, Bodyfelt J D, Dalfovo F, Modugno M, Flach S 2012 New J. Phys. 14 103036

    [39]

    Zhang Z J, Tong P Q, Gong J B, Li B W 2012 Phys. Rev. Lett. 108 070603

    [40]

    Zhang Z J, Li W J, Zhu X, Xiong Y, Tong P Q 2015 Acta Phys. Sin. 64 190501 (in Chinese) [张振俊, 李文娟, 朱璇, 熊烨, 童培庆 2015 64 190501]

    [41]

    Luck J M 1993 J. Stat. Phys. 72 417

  • [1] 冯曦曦, 陈文, 高先龙. 量子信息中的度量空间方法在准周期系统中的应用.  , 2024, 73(4): 040501. doi: 10.7498/aps.73.20231605
    [2] 李艳. 粒子间长程相互作用以及晶格中孤立缺陷点对两硬核玻色子在一维晶格势阱中量子行走的影响.  , 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [3] 胡洲, 曾招云, 唐佳, 罗小兵. 周期驱动的二能级系统中的准宇称-时间对称动力学.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220270
    [4] 周文豪, 王耀, 翁文康, 金贤敏. 集成光量子计算的研究进展.  , 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [5] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子行走的反馈搜索算法.  , 2022, 71(3): 030201. doi: 10.7498/aps.71.20211000
    [6] 杨晓荣, 王琼, 叶唐进, 土登次仁. 考虑对流和扩散两种动力学起源的连续时间随机行走模型.  , 2019, 68(13): 130501. doi: 10.7498/aps.68.20190088
    [7] 安志云, 李志坚. 逾渗分立时间量子行走的传输及纠缠特性.  , 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [8] 王丹丹, 李志坚. 一维相位缺陷量子行走的共振传输.  , 2016, 65(6): 060301. doi: 10.7498/aps.65.060301
    [9] 刘艳梅, 陈汉武, 刘志昊, 薛希玲, 朱皖宁. 星图上的散射量子行走搜索算法.  , 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [10] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性.  , 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [11] 任春年, 史鹏, 刘凯, 李文东, 赵洁, 顾永建. 初态对光波导阵列中连续量子行走影响的研究.  , 2013, 62(9): 090301. doi: 10.7498/aps.62.090301
    [12] 林 方, 包景东. 基于连续时间无规行走模型研究反常扩散.  , 2008, 57(2): 696-702. doi: 10.7498/aps.57.696
    [13] 陈贺胜. 周期驱动的一维台球模型的量子扩散特性.  , 2000, 49(5): 844-848. doi: 10.7498/aps.49.844
    [14] 茅惠兵, 陆卫, 马朝晖, 张家明, 姜山, 沈学础. GaAs/AlGaAs Fibonacci准周期超晶格带间跃迁的光谱研究.  , 1995, 44(10): 1588-1594. doi: 10.7498/aps.44.1588
    [15] 翁甲强, 孔令江, 陈光旨. 扩散控制聚集集团对无规行走粒子的屏蔽行为.  , 1990, 39(7): 19-27. doi: 10.7498/aps.39.19-2
    [16] 秦国毅. Ⅰ类和Ⅱ类准周期半导体超晶格的电子子带和波函数.  , 1989, 38(3): 366-375. doi: 10.7498/aps.38.366
    [17] 李孝申, 龚昌德. 周期和准周期超晶格固体薄膜表面吸附原子的共振荧光.  , 1988, 37(9): 1415-1424. doi: 10.7498/aps.37.1415
    [18] 李孝申, 龚昌德. 周期或准周期超晶格薄膜表面吸附原子的自发辐射性质.  , 1988, 37(4): 618-628. doi: 10.7498/aps.37.618
    [19] 秦国毅, 王永生. 半无限准周期原胞半导体超晶格的表面等离子激元.  , 1987, 36(10): 1273-1280. doi: 10.7498/aps.36.1273
    [20] 邓辉舫. 等待时间分布函数ψ(t)的渐近行为与连续时间无规行走问题的渐近解.  , 1986, 35(11): 1436-1446. doi: 10.7498/aps.35.1436
计量
  • 文章访问数:  5677
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-06-08
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map