- 
				In quantum computing science, much attention has been paid to how to construct quantum search algorithms better, moreover, searching for new search algorithms based on quantum walk is still attracting scholars' continuous in-depth research and exploration. In this paper, a multi-particle quantum walk search algorithm based on permutation group is proposed by considering many aspects, such as reducing time consumption and increasing the accuracy and controllability of algorithm search. Firstly, the permutation group can be regarded as a closed loop in space, and the permutation set is defined. The data set of data points is mapped to the defined permutation set by isomorphism mapping, which makes the element data points in the permutation set form a one-to-one correspondence. Secondly, according to the given initial state and coin operator, the target data search is carried out on the ring by using the quantum walk of multiple particles in the search space of the data point set and the permutation set. Finally, the target data is found according to the function$\varPhi(w)=1 $ , and the value is stored by the quantum state, which is used to form the feedback control of the search algorithm. At the same time, the direction of quantum walking on the ring is controlled by controlling the coin operator, thus increasing the operability and accuracy of the search. In this paper, the quantum walk of multiple particles is used to search, and the analysis shows that the particle number parameter j is negatively correlated with the time complexity, but not negatively linear. The proposed quantum walk search algorithm conforms to the zero condition and the lower bound condition, and is not affected by the variable parameter j. Through numerical analysis, it is found that the time complexity of the quantum walk search algorithm is equivalent to$O(\sqrt[3]{N})$ , which improves the search efficiency compared with the Grover search algorithm.- 
										Keywords:
										
- search algorithm /
- quantum random walk /
- permutation group /
- isomorphic mapping
 [1] Aharonov Y, Luiz D, Nicim Z 1993 Phys. Rev. A 48 1687  Google Scholar Google Scholar[2] Farhi E, Gutmann S 1998 Phys. Rev. A 58 915  Google Scholar Google Scholar[3] Godsil C, Kirkland S, Severini S, Smith J 2012 Phys. Rev. Lett. 109 050502  Google Scholar Google Scholar[4] Bose S 2003 Phys. Rev. Lett. 91 207901  Google Scholar Google Scholar[5] Childs A M 2009 Phys. Rev. Lett. 102 180501  Google Scholar Google Scholar[6] Berry S D, Wang J B 2011 Phys. Rev. A 83 042317 [7] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos C F 2010 Phys. Rev. Lett. 104 100503  Google Scholar Google Scholar[8] Ma H Y, Zhang X, Xu P A, Liu F 2020 Wirel. Pers. Commun. 113 2203  Google Scholar Google Scholar[9] Wocjan P, Abeyesinghe A 2008 Phys. Rev. A 78 042336  Google Scholar Google Scholar[10] Orsucci D, Briegel H J, Dunjko V 2018 Quantum 2 105  Google Scholar Google Scholar[11] Chakraborty S, Novo L, Ambainis A, Omar Y 2016 Phys. Rev. Lett. 116 100501  Google Scholar Google Scholar[12] Chakraborty S, Novo L, Di Giorgio S, Omar Y 2017 Phys. Rev. Lett. 119 220503  Google Scholar Google Scholar[13] Chang C R, Lin Y C, Chiu K L, Huang T W 2020 AAPPS Bull. 30 9  Google Scholar Google Scholar[14] Childs A M 2010 Commun. Math. Phys. 294 581  Google Scholar Google Scholar[15] Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307  Google Scholar Google Scholar[16] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502  Google Scholar Google Scholar[17] Caruso F 2014 New J. Phys. 16 055015  Google Scholar Google Scholar[18] Liu F, Zhang X, Xu P A, He Z X, Ma H Y 2020 Int. J. Theor. Phys. 59 3491  Google Scholar Google Scholar[19] Dunjko V, Briegel H J 2015 New J. Phys. 17 073004  Google Scholar Google Scholar[20] Glos A, Krawiec A, Kukulski R, PuchaPuchała Z 2018 Quantum Inf. Process. 17 1  Google Scholar Google Scholar[21] Mülken O, Blumen A 2011 Phys. Rep. 502 37  Google Scholar Google Scholar[22] Long G L, Wang C, Deng F G, Zheng C 2013 Conference on Coherence and Quantum Optics Rochester, New York, USA, June 17–20, 2013 ppM6–42 [23] Kempf A, Portugal R 2009 Phys. Rev. A 79 052317  Google Scholar Google Scholar[24] Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12  Google Scholar Google Scholar[25] Zhou Z, Sheng Y, Niu P, Yin L, Long G L, Hanzo L 2020 Sci. China: Phys. Mech. Astron. 63 1  Google Scholar Google Scholar[26] Long G L 2001 Phys. Rev. A 64 022307  Google Scholar Google Scholar[27] Zhou N R, Huang L X, Gong L H, Zeng Q W 2020 Quantum Inf. Process. 19 1  Google Scholar Google Scholar[28] Zhou N R, Zhu K N, Zou X F 2019 Ann. Phys. 531 1800520  Google Scholar Google Scholar[29] Zhou N R, Zhu K N, Bi W, Gong L H 2019 Quantum Inf. Process. 18 1  Google Scholar Google Scholar[30] Li H H, Gong L H, Zhou N R 2020 Chin. Phys. B 29 110304  Google Scholar Google Scholar[31] Sheng Y B, Zhou L 2018 Phys. Rev. A 98 052343  Google Scholar Google Scholar[32] Sheng Y B, Zhou L 2017 Sci. Bull. 62 1025  Google Scholar Google Scholar[33] 张禾瑞 1997 近世代数基础 (修订本) (北京: 高等教育出版社) 第50页 Zhang H R 1997 Base of Recent Generations (Vol. 19) (Beijing: Higher Education Press) p50 (in Chinese) [34] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I, Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502  Google Scholar Google Scholar[35] Diaconis P, Rockmore D 1990 J. Am. Math. Soc. 3 297  Google Scholar Google Scholar[36] Toyama F M, Van Dijk W, Nogami Y 2013 Quantum Inf. Process. 12 p1897  Google Scholar Google Scholar
- 
				
    
    
表 1 置换集合元素分布情况 Table 1. Distribution of the elements in permutation set. 子群 子群族 群内所在元素 $H_{1}$ $H_{1}^{1}$ $p(1, 1, 1), \; p(1, 1, 2)$ $\vdots$ $\vdots$ $H_{1}^{j_{1}}$ $p(1, j_{1}, 1)$, $p(1, j_{1}, 2)$ $H_{i}$ $H_{i}^{1}$ $p(i, 1, 1), \; p(i, 1, 2)$ $\vdots$ $\vdots$ $H_{i}^{j_{i}}$ $p(i, j_{i}, 1)$, $p(i, j_{i}, 2)$ 表 2 数据仿真结果 Table 2. Numerical simulation results. 数据点数量N $ j = 1 $ $ j = 2$ $ j = 3 $ 1024 3 2 1 2048 4 2 2 4096 4 2 2 8192 6 3 2 16384 7 4 3 32768 8 4 3 
- 
				
[1] Aharonov Y, Luiz D, Nicim Z 1993 Phys. Rev. A 48 1687  Google Scholar Google Scholar[2] Farhi E, Gutmann S 1998 Phys. Rev. A 58 915  Google Scholar Google Scholar[3] Godsil C, Kirkland S, Severini S, Smith J 2012 Phys. Rev. Lett. 109 050502  Google Scholar Google Scholar[4] Bose S 2003 Phys. Rev. Lett. 91 207901  Google Scholar Google Scholar[5] Childs A M 2009 Phys. Rev. Lett. 102 180501  Google Scholar Google Scholar[6] Berry S D, Wang J B 2011 Phys. Rev. A 83 042317 [7] Zähringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos C F 2010 Phys. Rev. Lett. 104 100503  Google Scholar Google Scholar[8] Ma H Y, Zhang X, Xu P A, Liu F 2020 Wirel. Pers. Commun. 113 2203  Google Scholar Google Scholar[9] Wocjan P, Abeyesinghe A 2008 Phys. Rev. A 78 042336  Google Scholar Google Scholar[10] Orsucci D, Briegel H J, Dunjko V 2018 Quantum 2 105  Google Scholar Google Scholar[11] Chakraborty S, Novo L, Ambainis A, Omar Y 2016 Phys. Rev. Lett. 116 100501  Google Scholar Google Scholar[12] Chakraborty S, Novo L, Di Giorgio S, Omar Y 2017 Phys. Rev. Lett. 119 220503  Google Scholar Google Scholar[13] Chang C R, Lin Y C, Chiu K L, Huang T W 2020 AAPPS Bull. 30 9  Google Scholar Google Scholar[14] Childs A M 2010 Commun. Math. Phys. 294 581  Google Scholar Google Scholar[15] Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307  Google Scholar Google Scholar[16] Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108 010502  Google Scholar Google Scholar[17] Caruso F 2014 New J. Phys. 16 055015  Google Scholar Google Scholar[18] Liu F, Zhang X, Xu P A, He Z X, Ma H Y 2020 Int. J. Theor. Phys. 59 3491  Google Scholar Google Scholar[19] Dunjko V, Briegel H J 2015 New J. Phys. 17 073004  Google Scholar Google Scholar[20] Glos A, Krawiec A, Kukulski R, PuchaPuchała Z 2018 Quantum Inf. Process. 17 1  Google Scholar Google Scholar[21] Mülken O, Blumen A 2011 Phys. Rep. 502 37  Google Scholar Google Scholar[22] Long G L, Wang C, Deng F G, Zheng C 2013 Conference on Coherence and Quantum Optics Rochester, New York, USA, June 17–20, 2013 ppM6–42 [23] Kempf A, Portugal R 2009 Phys. Rev. A 79 052317  Google Scholar Google Scholar[24] Zhou L, Sheng Y B, Long G L 2020 Sci. Bull. 65 12  Google Scholar Google Scholar[25] Zhou Z, Sheng Y, Niu P, Yin L, Long G L, Hanzo L 2020 Sci. China: Phys. Mech. Astron. 63 1  Google Scholar Google Scholar[26] Long G L 2001 Phys. Rev. A 64 022307  Google Scholar Google Scholar[27] Zhou N R, Huang L X, Gong L H, Zeng Q W 2020 Quantum Inf. Process. 19 1  Google Scholar Google Scholar[28] Zhou N R, Zhu K N, Zou X F 2019 Ann. Phys. 531 1800520  Google Scholar Google Scholar[29] Zhou N R, Zhu K N, Bi W, Gong L H 2019 Quantum Inf. Process. 18 1  Google Scholar Google Scholar[30] Li H H, Gong L H, Zhou N R 2020 Chin. Phys. B 29 110304  Google Scholar Google Scholar[31] Sheng Y B, Zhou L 2018 Phys. Rev. A 98 052343  Google Scholar Google Scholar[32] Sheng Y B, Zhou L 2017 Sci. Bull. 62 1025  Google Scholar Google Scholar[33] 张禾瑞 1997 近世代数基础 (修订本) (北京: 高等教育出版社) 第50页 Zhang H R 1997 Base of Recent Generations (Vol. 19) (Beijing: Higher Education Press) p50 (in Chinese) [34] Schreiber A, Cassemiro K N, Potoček V, Gábris A, Mosley P J, Andersson E, Jex I, Silberhorn Ch 2010 Phys. Rev. Lett. 104 050502  Google Scholar Google Scholar[35] Diaconis P, Rockmore D 1990 J. Am. Math. Soc. 3 297  Google Scholar Google Scholar[36] Toyama F M, Van Dijk W, Nogami Y 2013 Quantum Inf. Process. 12 p1897  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 6874
- PDF Downloads: 214
- Cited By: 0


 
					 
		         
	         
  
					 
												








 
							

 DownLoad:
DownLoad: 
				 
							 
							



 
							 
							 
							