Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic behaviors of spreading in generalized Fibonacci time quasiperiodic quantum walks

Wang Wen-Juan Tong Pei-Qing

Citation:

Dynamic behaviors of spreading in generalized Fibonacci time quasiperiodic quantum walks

Wang Wen-Juan, Tong Pei-Qing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Quantum walk (QW), the quantum mechanical counterpart of classical random walk, has recently been studied in various fields. The evolution of the discrete time quantum walk can be described as follows: the walker changes its spin state by the coin operator C, then takes one step left or right according to its spin state. For homogeneous quantum walk, the coin operator is independent of time and the standard deviation of the position grows linearly in time. It is quadratically faster than that in the classical random walk. In this work, we numerically study the dynamical behaviors of spreading in a one-dimensional discrete time quasiperiodic quantum walk (DTQQW). The DTQQW is that the coin operator is dependent on time and takes two different coins C() and C() arranged in generalized Fibonacci (GF) sequences. The GF sequences are constructed from A by the recursion relation: AAmBn, BA, for m, n are positive integers. They can be classified into two classes according to the wandering exponent . For 0, they belong to the first class, and for 0, they belong to the second class. For one dimensional system, the behaviors of two classes of GF systems are different either for the electronic spectrum of an electron in quasiperiodic potentials or for the quantum phase transitions of the quasiperiodic spin chains. In this paper, we discuss the cases of two different C operators (C();C()) arranged in GF sequences and find that the spreading behaviors are superdiffusion (the standard deviation of the position ~t; 0:5 1) for the two classes of GF DTQQW. For the second class of GF DTQQW, the exponent values are larger than those of the first class of GF DTQQW in the case of two identical C operators. By exploring the probability distribution in the real space, we find that for the first class of GF DTQQW, the probability distributions are almost the same for different initial states and are similar to the classical Gaussian distribution. For the probability distributions of the second class of GF DTQQW, there are two peaks at the two edges and the height of the two peaks can be different for different initial states. They are similar to the ballistic distribution of the homogeneous quantum walk. Therefore, we conclude that for the first class of GF DTQQW, the spreading behaviors are close to those of the classical random walk ( = 0:5) while for the second class of GF DTQQW, they are close to those of the homogeneous quantum walk ( = 1). This result is quite different from the characteristics of the quantum phase transitions in two classes of GF quasiperiodic quantum spin chains.
      Corresponding author: Tong Pei-Qing, pqtong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175087, 11575087).
    [1]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 2

    [2]

    Kempe J 2003 Contemp. Phys. 44 307

    [3]

    Childs A M, Farhi V, Gutmann S 2002 Quantum Inf. Process. 1 35

    [4]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015

    [5]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307

    [6]

    Oka T, Konno N, Arita R, Aoki H 2005 Phys. Rev. Lett. 94 100602

    [7]

    Chandrashekar C M, Laflamme R 2008 Phys. Rev. A 78 022314

    [8]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [9]

    Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos C F 2010 Phys. Rev. Lett. 104 100503

    [10]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [11]

    Dur W, Raussendorf R, Kendon V M, Briegel H J 2002 Phys. Rev. A 66 052319

    [12]

    Ma Z Y, Burnett K, d’Arcy M B, Gardiner S A 2006 Phys. Rev. A 73 013401

    [13]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310

    [14]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316

    [15]

    Chandrashekar C M 2006 Phys. Rev. A 74 032307

    [16]

    Ryan C A, Laforest M, Boileau J C, Laflamme R 2005 Phys. Rev. A 72 062317

    [17]

    Eckert K, Mompart J, Birkl G, Lewenstein M 2005 Phys. Rev. A 72 012327

    [18]

    Manouchehri K, Wang J B 2008 J. Phys. A 41 065304

    [19]

    Xue P, Sanders C B, Leibfried D 2009 Phys. Rev. Lett. 103 183602

    [20]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [21]

    Nayak A, Vishwanath A 2000 arXiv: 0010117v1 [quant-ph]

    [22]

    Bednarska M, Grudka A, Kurzynski P, Luczak T, Wojcik A 2003 Phys. Lett. A 317 21

    [23]

    Xu X P 2010 Eur. Phys. J. B 77 479

    [24]

    Marquezino F L, Portugal R, Abal G, Donangelo R 2008 Phys. Rev. A 77 042312

    [25]

    Ribeiro P, Milman P, Mosseri R 2004 Phys. Rev. Lett. 93 190503

    [26]

    Zhang R, Xu Y Q, Xue P 2015 Chin. Phys. B 24 010303

    [27]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 110312

    [28]

    Li M, Zhang Y S, Guo G C 2013 Chin. Phys. Lett. 2 020304

    [29]

    Xu X P, Liu F 2008 Phys. Rev. A 77 062318

    [30]

    Zhao J, Hu Y Y, Tong P Q 2015 Chin. Phys. Lett. 32 060501

    [31]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [32]

    Levine D, Steinhardt P J 1984 Phys. Rev. Lett. 53 2477

    [33]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [34]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [35]

    Kolár M, Ali M K, Nori F 1991 Phys. Rev. B 43 1034

    [36]

    Dulea M, Severin M, Riklund R 1990 Phys. Rev. B 42 3680

    [37]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [38]

    Larcher M, Laptyeva T V, Bodyfelt J D, Dalfovo F, Modugno M, Flach S 2012 New J. Phys. 14 103036

    [39]

    Zhang Z J, Tong P Q, Gong J B, Li B W 2012 Phys. Rev. Lett. 108 070603

    [40]

    Zhang Z J, Li W J, Zhu X, Xiong Y, Tong P Q 2015 Acta Phys. Sin. 64 190501 (in Chinese) [张振俊, 李文娟, 朱璇, 熊烨, 童培庆 2015 64 190501]

    [41]

    Luck J M 1993 J. Stat. Phys. 72 417

  • [1]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 2

    [2]

    Kempe J 2003 Contemp. Phys. 44 307

    [3]

    Childs A M, Farhi V, Gutmann S 2002 Quantum Inf. Process. 1 35

    [4]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015

    [5]

    Shenvi N, Kempe J, Whaley K B 2003 Phys. Rev. A 67 052307

    [6]

    Oka T, Konno N, Arita R, Aoki H 2005 Phys. Rev. Lett. 94 100602

    [7]

    Chandrashekar C M, Laflamme R 2008 Phys. Rev. A 78 022314

    [8]

    Kitagawa T, Rudner M S, Berg E, Demler E 2010 Phys. Rev. A 82 033429

    [9]

    Zahringer F, Kirchmair G, Gerritsma R, Solano E, Blatt R, Roos C F 2010 Phys. Rev. Lett. 104 100503

    [10]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103 090504

    [11]

    Dur W, Raussendorf R, Kendon V M, Briegel H J 2002 Phys. Rev. A 66 052319

    [12]

    Ma Z Y, Burnett K, d’Arcy M B, Gardiner S A 2006 Phys. Rev. A 73 013401

    [13]

    Travaglione B C, Milburn G J 2002 Phys. Rev. A 65 032310

    [14]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67 042316

    [15]

    Chandrashekar C M 2006 Phys. Rev. A 74 032307

    [16]

    Ryan C A, Laforest M, Boileau J C, Laflamme R 2005 Phys. Rev. A 72 062317

    [17]

    Eckert K, Mompart J, Birkl G, Lewenstein M 2005 Phys. Rev. A 72 012327

    [18]

    Manouchehri K, Wang J B 2008 J. Phys. A 41 065304

    [19]

    Xue P, Sanders C B, Leibfried D 2009 Phys. Rev. Lett. 103 183602

    [20]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58 915

    [21]

    Nayak A, Vishwanath A 2000 arXiv: 0010117v1 [quant-ph]

    [22]

    Bednarska M, Grudka A, Kurzynski P, Luczak T, Wojcik A 2003 Phys. Lett. A 317 21

    [23]

    Xu X P 2010 Eur. Phys. J. B 77 479

    [24]

    Marquezino F L, Portugal R, Abal G, Donangelo R 2008 Phys. Rev. A 77 042312

    [25]

    Ribeiro P, Milman P, Mosseri R 2004 Phys. Rev. Lett. 93 190503

    [26]

    Zhang R, Xu Y Q, Xue P 2015 Chin. Phys. B 24 010303

    [27]

    Zhang R, Qin H, Tang B, Xue P 2013 Chin. Phys. B 22 110312

    [28]

    Li M, Zhang Y S, Guo G C 2013 Chin. Phys. Lett. 2 020304

    [29]

    Xu X P, Liu F 2008 Phys. Rev. A 77 062318

    [30]

    Zhao J, Hu Y Y, Tong P Q 2015 Chin. Phys. Lett. 32 060501

    [31]

    Shechtman D, Blech I, Gratias D, Cahn J W 1984 Phys. Rev. Lett. 53 1951

    [32]

    Levine D, Steinhardt P J 1984 Phys. Rev. Lett. 53 2477

    [33]

    Merlin R, Bajema K, Clarke R, Juang F Y, Bhattacharya P K 1985 Phys. Rev. Lett. 55 1768

    [34]

    Chakrabarti A, Karmakar S N 1991 Phys. Rev. B 44 896

    [35]

    Kolár M, Ali M K, Nori F 1991 Phys. Rev. B 43 1034

    [36]

    Dulea M, Severin M, Riklund R 1990 Phys. Rev. B 42 3680

    [37]

    Oh G Y, Lee M H 1993 Phys. Rev. B 48 12465

    [38]

    Larcher M, Laptyeva T V, Bodyfelt J D, Dalfovo F, Modugno M, Flach S 2012 New J. Phys. 14 103036

    [39]

    Zhang Z J, Tong P Q, Gong J B, Li B W 2012 Phys. Rev. Lett. 108 070603

    [40]

    Zhang Z J, Li W J, Zhu X, Xiong Y, Tong P Q 2015 Acta Phys. Sin. 64 190501 (in Chinese) [张振俊, 李文娟, 朱璇, 熊烨, 童培庆 2015 64 190501]

    [41]

    Luck J M 1993 J. Stat. Phys. 72 417

  • [1] Feng Xi-Xi, Chen Wen, Gao Xian-Long. Application of metric space method in quantum information in quasi-periodic systems. Acta Physica Sinica, 2024, 73(4): 040501. doi: 10.7498/aps.73.20231605
    [2] Li Yan. Effects of long-range inter-particle interactions and isolated defect on quantum walks of two hard-core bosons in one-dimensional lattices. Acta Physica Sinica, 2023, 72(17): 170501. doi: 10.7498/aps.72.20230642
    [3] Hu Zhou, Zeng Zhao-Yun, Tang Jia, Luo Xiao-Bing. Quasi-parity-time symmetric dynamics in periodically driven two-level non-Hermitian system. Acta Physica Sinica, 2022, 71(7): 074207. doi: 10.7498/aps.70.20220270
    [4] Zhou Wen-Hao, Wang Yao, Weng Wen-Kang, Jin Xian-Min. Research progress of integrated optical quantum computing. Acta Physica Sinica, 2022, 71(24): 240302. doi: 10.7498/aps.71.20221782
    [5] Jiang Yao-Yao, Zhang Wen-Bin, Chu Peng-Cheng, Ma Hong-Yang. Feedback search algorithm for multi-particle quantum walks over a ring based on permutation groups. Acta Physica Sinica, 2022, 71(3): 030201. doi: 10.7498/aps.71.20211000
    [6] Yang Xiao-Rong, Wang Qiong, Ye Tang-Jin, Tudeng Ci-Ren. Continuous time random walk model with advection and diffusion as two distinct dynamical origins. Acta Physica Sinica, 2019, 68(13): 130501. doi: 10.7498/aps.68.20190088
    [7] An Zhi-Yun, Li Zhi-Jian. Properties of distribution and entanglement in discrete-time quantum walk with percolation. Acta Physica Sinica, 2017, 66(13): 130303. doi: 10.7498/aps.66.130303
    [8] Wang Dan-Dan, Li Zhi-Jian. Resonance transmission of one-dimensional quantum walk with phase defects. Acta Physica Sinica, 2016, 65(6): 060301. doi: 10.7498/aps.65.060301
    [9] Liu Yan-Mei, Chen Han-Wu, Liu Zhi-Hao, Xue Xi-Ling, Zhu Wan-Ning. Scattering quantum walk search algorithm on star graph. Acta Physica Sinica, 2015, 64(1): 010301. doi: 10.7498/aps.64.010301
    [10] Luo Xiao-Hua, He Wei, Wu Mu-Ying, Luo Shi-Yu. Quasi-periodic excitation and dynamic stability for strained superlattice. Acta Physica Sinica, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [11] Ren Chun-Nian, Shi Peng, Liu Kai, Li Wen-Dong, Zhao Jie, Gu Yong-Jian. Effects of initial states on continuous-time quantum walk in the optical waveguide array. Acta Physica Sinica, 2013, 62(9): 090301. doi: 10.7498/aps.62.090301
    [12] Lin Fang, Bao Jing-Dong. Approach of continuous time random walk model to anomalous diffusion. Acta Physica Sinica, 2008, 57(2): 696-702. doi: 10.7498/aps.57.696
    [13] CHEN HE-SHENG. THE QUANTUM TRANSPORT PROPERTIES OF A 1-DIMENSIONAL KICKED BILLIARDS MODEL. Acta Physica Sinica, 2000, 49(5): 844-848. doi: 10.7498/aps.49.844
    [14] MAO HUI-BING, LU WEI, MA CHAO-HUI, ZHANG JIA-MING, JIANG SHAN, SHEN XUE-CHU. . Acta Physica Sinica, 1995, 44(10): 1588-1594. doi: 10.7498/aps.44.1588
    [15] WENG JIA-QIANG, KONG LING-JIANG, CHEN GUANG-ZHI. SCREENING BEHAVIOR OF THE DIFFUSION-LIMITED AGGREGATION FOR SOME RANDOM WALK PARTICLES. Acta Physica Sinica, 1990, 39(7): 19-27. doi: 10.7498/aps.39.19-2
    [16] QIN GUO-YI. ELECTRON SUBBANDS AND WAVE FUNCTIONS OF TYPE-Ⅰ AND TYPE-Ⅱ QUASIPERIODIC SEMI- CONDUCTOR SUPERLATTICES. Acta Physica Sinica, 1989, 38(3): 366-375. doi: 10.7498/aps.38.366
    [17] LI XIAO-SHEN, GONG CHANG-DE. SPONTANEOUS EMISSION OF AN ATOM NEAR THE SURFACE OF A SUPERLATTICE FILM WITH PERIODIC OR QUASI-PERIODIC STRUCTURE. Acta Physica Sinica, 1988, 37(4): 618-628. doi: 10.7498/aps.37.618
    [18] LI XIAO-SHEN, GONG CHANG-DE. RESONANCE FLUORESCENCE OF AN ADATOM NEAR THE SURFACE OF A PERIODIC OR QUASI-PERIODIC SUPERLATTICE FILM. Acta Physica Sinica, 1988, 37(9): 1415-1424. doi: 10.7498/aps.37.1415
    [19] QIN GUO-YI, WANG YONG-SHENG. SURFACE PLASMONS IN QUASIPERIODIC SEMICONDUCTOR SUPERLATTICE. Acta Physica Sinica, 1987, 36(10): 1273-1280. doi: 10.7498/aps.36.1273
    [20] DENG HUI-FANG. ASYMPTOTIC BEHAVIORS OF WAITING TIME DISTRIBUTION FUNCTION (WTDF) ψ(t) AND ASYMPTOTIC SOLUTIONS OF CONTINUOUS-TIME RANDOM WALK (CTRW) PROBLEMS. Acta Physica Sinica, 1986, 35(11): 1436-1446. doi: 10.7498/aps.35.1436
Metrics
  • Abstract views:  5678
  • PDF Downloads:  277
  • Cited By: 0
Publishing process
  • Received Date:  05 February 2016
  • Accepted Date:  08 June 2016
  • Published Online:  05 August 2016

/

返回文章
返回
Baidu
map