-
We investigate the structural and dynamic properties of isothermal crystallization of Cu nanocluster which contains 500 Cu atoms (Cu500), according to the embedded atom model, using molecular dynamics simulations. We calculate the Honeycutt-Anderson bond-type index, the inherent structure (IS) and the revisionary mean-square displacement of Cu nanocluster in crystallization process. All analyses suggest that the crystallization time of Cu500 is dependent on temperature. At high temperature, the crystallization time is well represented by a Gaussian distribution, which is not observed at low temperature. Cu500 displays multi-step crystallization at low temperature. On the other hand, we note that the influence of initial configuration on isothermal crystallization is significant. For the same thermodynamic state, especially at low temperature, the lower the IS of initial configuration, the longer the crystallization time is.
[1] Chen N, Frank R 2011 Acta Mater. 59 6433
[2] Jang D C, Greer J R 2010 Nat. Mater. 9 215
[3] Qi Y 2001 J. Chem. Phys. 115 385
[4] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 4245 (in Chinese) [杨全文, 朱如曾 2005 54 4245]
[5] Song H J, Li X H 2006 Chin. J. Chem. 24 273
[6] Gafner Y Y, Gafner S L 2004 Phys. Sol. State. 46 1327
[7] Chui Y H, Snook I K 2007 Phys. Rev. B 76 195427
[8] Sutter P W, Sutter E A 2007 Nat. Mater. 6 363
[9] Chui Y H 2006 J. Chem. Phys. 125 114703
[10] Merikanto J 2007 Phys. Rev. Lett. 98 145702
[11] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[12] Chen F F, Zhang H F 2004 Acta Metall. Sin. 40 731 (in Chinese) [陈芳芳, 张海峰 2004 金属学报 40 731]
[13] Qi W, Wang M 2004 Mater. Chem. Phys. 88 280
[14] Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518
[15] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 89 (in Chinese) [杨全文, 朱如曾 2005 54 89]
[16] Wen Y H, Zhang Y 2009 Acta Phys. Sin. 58 2585 (in Chinese) [文玉华, 张杨 2009 58 2585]
[17] Uhlmann D 1972 J. Non-Cryst. Solids 7 337
[18] Sciortino F 2005 J. Stat. Mech-Theory E 2005 P05015
[19] Sastry S, Debenedetti P G 1998 Nature 393 554
[20] Ediger M, Angel C 1996 J. Phys. Chem. 100 13200
[21] Debenedetti P G, Stillinger F H 2001 Nature 410 259
-
[1] Chen N, Frank R 2011 Acta Mater. 59 6433
[2] Jang D C, Greer J R 2010 Nat. Mater. 9 215
[3] Qi Y 2001 J. Chem. Phys. 115 385
[4] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 4245 (in Chinese) [杨全文, 朱如曾 2005 54 4245]
[5] Song H J, Li X H 2006 Chin. J. Chem. 24 273
[6] Gafner Y Y, Gafner S L 2004 Phys. Sol. State. 46 1327
[7] Chui Y H, Snook I K 2007 Phys. Rev. B 76 195427
[8] Sutter P W, Sutter E A 2007 Nat. Mater. 6 363
[9] Chui Y H 2006 J. Chem. Phys. 125 114703
[10] Merikanto J 2007 Phys. Rev. Lett. 98 145702
[11] Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950
[12] Chen F F, Zhang H F 2004 Acta Metall. Sin. 40 731 (in Chinese) [陈芳芳, 张海峰 2004 金属学报 40 731]
[13] Qi W, Wang M 2004 Mater. Chem. Phys. 88 280
[14] Alavi S, Thompson D L 2006 J. Phys. Chem. A 110 1518
[15] Yang Q W, Zhu R Z 2005 Acta Phys. Sin. 54 89 (in Chinese) [杨全文, 朱如曾 2005 54 89]
[16] Wen Y H, Zhang Y 2009 Acta Phys. Sin. 58 2585 (in Chinese) [文玉华, 张杨 2009 58 2585]
[17] Uhlmann D 1972 J. Non-Cryst. Solids 7 337
[18] Sciortino F 2005 J. Stat. Mech-Theory E 2005 P05015
[19] Sastry S, Debenedetti P G 1998 Nature 393 554
[20] Ediger M, Angel C 1996 J. Phys. Chem. 100 13200
[21] Debenedetti P G, Stillinger F H 2001 Nature 410 259
Catalog
Metrics
- Abstract views: 7423
- PDF Downloads: 646
- Cited By: 0