搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究

阳喜元 全军

引用本文:
Citation:

金属纳米线弹性性能的尺寸效应及其内在机理的模拟研究

阳喜元, 全军

Simulations of the size effect on the elastic properties and the inherent mechanism of metallic nanowire

Yang Xi-Yuan, Quan Jun
PDF
导出引用
  • 本文应用分子动力学(MD)方法和改进分析型嵌入原子模型(MAEAM)研究了Ni, Al和V纳米线的弹性性能尺寸效应及表面对其影响, 并计算了相应完整晶格材料的弹性性能. 结果表明本文计算完整晶格材料的弹性性能与已有实验和理论的结果相符合. 而计算所得各金属纳米线的体模量明显低于相应块体材料的结果, 且随纳米线的尺寸增加而呈指数增加, 并接近于常数. 在此基础上, 通过研究Ni, Al和V纳米线表面能的尺寸效应及其分布特征进一步探讨了自由表面在尺寸影响纳米线弹性性能过程中的作用及其内在机理.
    In this paper molecular dynamics (MD) method and the modified analytical embedded atom model (MAEAM) are used to investigate the size effect on the elastic properties of Ni, Al and V nanowires and the role the free surface plays. For convenience of comparison, the elastic properties of these corresponding perfect bulk materials are also studied. Results obtained indicate that the calculated values of the elastic properties of these perfect materials are in good agreement with those previously given theoretical and experimental ones. But the calculated bulk moduli of the nanowires, which are lower than those of the prefect materials, increase exponentially with increasing size of the nanowire and are nearly close to a constant (180.20 GPa for the Ni nanowire, 83.98 GPa for the Al nanowire and 162.48 GPa for the V nanowire). Meanwhile, the surface energy of the nanowire decreases exponentially with the increase of its size and reaches a minimal value (1.84 J·m-2 for the Ni nanowire, 0.77 J·m-2 for the Al nanowire, and 1.71 J·m-2 for the V nanowire), which is consistent with the corresponding bulk material. And the critical value of the size, which has a distinct effect on the elastic properties and the surface energy, is about 5.0 nm for all nanowires. On this basis, the free surface dependence of the elastic properties of these metallic nanowires and the inherent mechanisms are further discussed by exploring the size effect on the surface energies of Ni, Al and V nanowires and their distribution characteristics, showing that the free surface plays a more and more important role in the diminution of the elastic properties of nanowires as the size decreases. The mode of the surface impacting on the elastic properties of nanowire is described as follows:The surface first reduces the compressional stress of the internal core region of nanowires and then the reduced compressional stress results further in the decrease in the elastic properties of nanowires.
    • 基金项目: 国家自然科学基金(批准号:11304276,11147152)和岭南师范学院人才引进项目(批准号:ZL1405)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304276, 11147152), and the Talent Project of Lingnan Normal University (Grant No. ZL1405).
    [1]

    Iijima S, Qin L C, Hong B H, Bae S C, Youn S Y, Kim K S 2002 Science 296 611

    [2]

    Arivalagan K, Ravichandran S, Rangasamy K 2011 Int. J. Chem. Tech. Res. 3 534

    [3]

    Zhang J Y, Liang X, Zhang P, Wu K, Liu G, Sun J 2014 Acta Mater. 66 302

    [4]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221

    [5]

    Zheng X P, Cao Y P, Li B, Feng X Q, Wang G F 2010 Nanotechnology 21 205702

    [6]

    Sadeghian H, Goosen J F L, Bossche A, Van Keulen F 2009 Appl. Phys. Lett. 94 231908

    [7]

    Asthana A, Momeni K, Prasad A, Yap Y K, Yassar R S 2011 Nanotechnology 22 265712

    [8]

    Yao H Y, Yun G H, Fan W L 2013 Chin. Phys. B 22 106201

    [9]

    Peng C, Ganesan Y W, Lu Y, Lou J 2012 J. Appl. Phys. 111 063524

    [10]

    Wang Y J, Gao G J, Ogata S 2013 Appl. Phys. Lett. 102 041902

    [11]

    Yu Q, Qi L, Chen K, Mishra R K, Li J, Minor A M 2012 Nano Lett. 12 887

    [12]

    Chen L Y, Richter G, Sullivan J P, Gianola D S 2012 Phys. Rev. Lett. 109 125503

    [13]

    Hu W Y, Masahiro F. 2002 Modelling Simul. Mater. Sci. Eng. 10 707

    [14]

    Nosé S 1984 J. Chem. Phys. 81 511

    [15]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [16]

    Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [17]

    Wang S Q, Ye H Q 2003 J. Phys. :Condens. Matt. 15 5307

    [18]

    Cagin T, John R R 1988 Phys. Rev. B 38 7940

    [19]

    Mishin Y 2004 Acta Mater. 52 1451

    [20]

    Simmons G, Wang H 1977 Single crystal elastic constants and calculated aggregate properties (Cambridge MA:MIT Press) pp7-12

    [21]

    Li X Q, Zhang H L, Lu S, Johnsson B, Vitos L 2012 Phys. Rev. B 86 014105

    [22]

    Li X Q, Zhang C, Zhao J J, Johnsson B 2011 Comp. Mater. Sci. 50 2727

    [23]

    Mehl M J, Papaconstantopoulos D A 1996 Phys. Rev. B 54 4519

    [24]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 5844

    [25]

    Bolef D I, Smith R E, Miller J G 1972 Phys. Rev. B 3 4100

    [26]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [27]

    Jing G Y, Duan H L, Sun X M, Zhang Z S, Xu J, Li Y D, Wang J X, Yu D P 2006 Phys. Rev. B 73 235409

    [28]

    Kumar K S, Swygenhoven H V, Suresh S 2003 Acta Mater. 51 5743

    [29]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [30]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [31]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [32]

    Wang B, Zhang J M, Lu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为 2011 60 016601]

    [33]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha:Hunan University press) pp18-25 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用--原子尺度材料设计理论 (长沙:湖南大学出版社) 第18-25页]

    [34]

    Bozzolo G, Ferrante J, Noebe R D, Good B, Honecy F S, Abel P 1999 Comp. Mater. Sci. 15 169

    [35]

    de Boer F R, Room R, Mattens W C M, Miedema A R, Niessen A K 1988 Cohesion in metals:Transition Metal Alloys (North-Holland:Amsterdam) pp1-45

    [36]

    Kumikov V K, Khokonov Kh B 1983 J. Appl. Phys. 54 1346

    [37]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [38]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45

    [39]

    Guellil A M, Adams J B 1992 J. Mater. Res. 7 639

    [40]

    Zhang F Y, Teng Y Y, Zhang M X, Zhu S L 2005 Corr. Sci. Prot Tech. 17 47 (in Chinese) [张芳英, 腾英元, 张美霞, 朱圣龙 2005 腐蚀科学与防护技术 17 47]

    [41]

    Rodriguez A M, Bozzolo G, Ferrante J 1993 Surf. Sci. 289 100

    [42]

    Mutasa B, Farkas D 1998 Surf. Sci. 415 312

    [43]

    Ouyang G, Li X L, Tan X, Yang G W 2006 Appl. Phys. Lett. 89 031904

    [44]

    Huang W J, Sun R, Tao J, Menard L D, Nuzzo J M, Zuo J M 2008 Nat. Mater. 7 308

    [45]

    Wen Y H, Shao G F, Zhu Z Z 2008 Acta Phys. Sin. 57 1013 (in Chinese) [文玉华, 邵桂芳, 朱梓忠 2008 57 1013]

    [46]

    Phillpot S R, Wolf D, Glieter H 1995 J. Appl. Phys. 78 847

    [47]

    Yang X Y, Xiao S F, Hu W Y 2013 J. Appl. Phys. 114 094303

  • [1]

    Iijima S, Qin L C, Hong B H, Bae S C, Youn S Y, Kim K S 2002 Science 296 611

    [2]

    Arivalagan K, Ravichandran S, Rangasamy K 2011 Int. J. Chem. Tech. Res. 3 534

    [3]

    Zhang J Y, Liang X, Zhang P, Wu K, Liu G, Sun J 2014 Acta Mater. 66 302

    [4]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221

    [5]

    Zheng X P, Cao Y P, Li B, Feng X Q, Wang G F 2010 Nanotechnology 21 205702

    [6]

    Sadeghian H, Goosen J F L, Bossche A, Van Keulen F 2009 Appl. Phys. Lett. 94 231908

    [7]

    Asthana A, Momeni K, Prasad A, Yap Y K, Yassar R S 2011 Nanotechnology 22 265712

    [8]

    Yao H Y, Yun G H, Fan W L 2013 Chin. Phys. B 22 106201

    [9]

    Peng C, Ganesan Y W, Lu Y, Lou J 2012 J. Appl. Phys. 111 063524

    [10]

    Wang Y J, Gao G J, Ogata S 2013 Appl. Phys. Lett. 102 041902

    [11]

    Yu Q, Qi L, Chen K, Mishra R K, Li J, Minor A M 2012 Nano Lett. 12 887

    [12]

    Chen L Y, Richter G, Sullivan J P, Gianola D S 2012 Phys. Rev. Lett. 109 125503

    [13]

    Hu W Y, Masahiro F. 2002 Modelling Simul. Mater. Sci. Eng. 10 707

    [14]

    Nosé S 1984 J. Chem. Phys. 81 511

    [15]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [16]

    Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [17]

    Wang S Q, Ye H Q 2003 J. Phys. :Condens. Matt. 15 5307

    [18]

    Cagin T, John R R 1988 Phys. Rev. B 38 7940

    [19]

    Mishin Y 2004 Acta Mater. 52 1451

    [20]

    Simmons G, Wang H 1977 Single crystal elastic constants and calculated aggregate properties (Cambridge MA:MIT Press) pp7-12

    [21]

    Li X Q, Zhang H L, Lu S, Johnsson B, Vitos L 2012 Phys. Rev. B 86 014105

    [22]

    Li X Q, Zhang C, Zhao J J, Johnsson B 2011 Comp. Mater. Sci. 50 2727

    [23]

    Mehl M J, Papaconstantopoulos D A 1996 Phys. Rev. B 54 4519

    [24]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 5844

    [25]

    Bolef D I, Smith R E, Miller J G 1972 Phys. Rev. B 3 4100

    [26]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [27]

    Jing G Y, Duan H L, Sun X M, Zhang Z S, Xu J, Li Y D, Wang J X, Yu D P 2006 Phys. Rev. B 73 235409

    [28]

    Kumar K S, Swygenhoven H V, Suresh S 2003 Acta Mater. 51 5743

    [29]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [30]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [31]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [32]

    Wang B, Zhang J M, Lu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为 2011 60 016601]

    [33]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha:Hunan University press) pp18-25 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用--原子尺度材料设计理论 (长沙:湖南大学出版社) 第18-25页]

    [34]

    Bozzolo G, Ferrante J, Noebe R D, Good B, Honecy F S, Abel P 1999 Comp. Mater. Sci. 15 169

    [35]

    de Boer F R, Room R, Mattens W C M, Miedema A R, Niessen A K 1988 Cohesion in metals:Transition Metal Alloys (North-Holland:Amsterdam) pp1-45

    [36]

    Kumikov V K, Khokonov Kh B 1983 J. Appl. Phys. 54 1346

    [37]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [38]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45

    [39]

    Guellil A M, Adams J B 1992 J. Mater. Res. 7 639

    [40]

    Zhang F Y, Teng Y Y, Zhang M X, Zhu S L 2005 Corr. Sci. Prot Tech. 17 47 (in Chinese) [张芳英, 腾英元, 张美霞, 朱圣龙 2005 腐蚀科学与防护技术 17 47]

    [41]

    Rodriguez A M, Bozzolo G, Ferrante J 1993 Surf. Sci. 289 100

    [42]

    Mutasa B, Farkas D 1998 Surf. Sci. 415 312

    [43]

    Ouyang G, Li X L, Tan X, Yang G W 2006 Appl. Phys. Lett. 89 031904

    [44]

    Huang W J, Sun R, Tao J, Menard L D, Nuzzo J M, Zuo J M 2008 Nat. Mater. 7 308

    [45]

    Wen Y H, Shao G F, Zhu Z Z 2008 Acta Phys. Sin. 57 1013 (in Chinese) [文玉华, 邵桂芳, 朱梓忠 2008 57 1013]

    [46]

    Phillpot S R, Wolf D, Glieter H 1995 J. Appl. Phys. 78 847

    [47]

    Yang X Y, Xiao S F, Hu W Y 2013 J. Appl. Phys. 114 094303

  • [1] 邹幸, 朱哲, 方文啸. 纳米线电卡效应的表面应力与固溶改性相场模拟.  , 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [2] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究.  , 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [3] 徐帅, 杨贇贇, 刘行, 何济洲. 基于一维弹道导体的三端纳米线制冷机的性能优化.  , 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [4] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响.  , 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [5] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型.  , 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [6] 华钰超, 曹炳阳. 多约束纳米结构的声子热导率模型研究.  , 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [7] 阳喜元, 张晋平, 吴玉蓉, 刘福生. B2-NiAl纳米薄膜厚度对其弹性性能影响的模拟研究.  , 2015, 64(1): 016803. doi: 10.7498/aps.64.016803
    [8] 羊梦诗, 李鑫, 叶志鹏, 陈亮, 徐灿, 储修祥. 丝素氨基酸寡肽链生长过程中的尺寸效应.  , 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [9] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟.  , 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [10] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能.  , 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [11] 黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究.  , 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [12] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究.  , 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [13] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响.  , 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [14] 周志东, 张春祖, 张颖. 外延铁电薄膜相变温度的尺寸效应.  , 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [15] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究.  , 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [16] 吕惠民, 陈光德, 颜国君, 耶红刚. 低温条件下单晶氮化铝纳米线生长机理的研究.  , 2007, 56(5): 2808-2812. doi: 10.7498/aps.56.2808
    [17] 张 芸, 张波萍, 焦力实, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究.  , 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [18] 徐 灿, 曹 娟, 高晨阳. 第一性原理研究一维SiO2纳米材料的结构和性质.  , 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [19] 张 志, 陈春玲, 王朝龙, 余东满. 压力下Nd60Al10Fe20Co10块体金属玻璃的弹性行为.  , 2006, 55(11): 5975-5979. doi: 10.7498/aps.55.5975
    [20] 缪智武, 丁建文, 颜晓红, 唐娜斯. 畸变对hopping电导的影响:ThueMorse纳米结构模型.  , 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
计量
  • 文章访问数:  6531
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2014-12-31
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map