-
对于纤锌矿结构ZnO/MgxZn1-xO有限深单量子阱结构,考虑内建电场、导带弯曲及材料掺杂对实际异质结势的影响,利用有限差分法和自洽法数值求解Schrödinger方程和Poisson 方程,获得电子(空穴)的本征能级和本征波函数. 进而,采用费米黄金法则讨论带间光吸收的尺寸效应和三元混晶效应. 结果表明:三元混晶材料MgxZn1-xO中Mg组分的增加会增强垒层和阱层的内建电场强度,使得电子(空穴)平均位置靠近左(右)垒,导致带间跃迁吸收峰呈指数减小且发生蓝移;ZnO/MgxZn1-xO 量子阱带间跃迁吸收峰随阱宽增大而减小,吸收峰发生红移. 所得结果可为改善异质结构材料和器件的光电性能提供理论指导,以期获得实际应用所需的光学吸收频谱和波长.
-
关键词:
- ZnO/MgxZn1-xO量子阱 /
- 带间光吸收 /
- 三元混晶效应 /
- 尺寸效应
Adopting a numerical method of solving self-consistently the Schrödinger equation and Poisson equation, the eigenstates and eigenenergies of electrons (holes) in a two-dimensional electron-hole gas are obtained for wurtzite asymmetric ZnO/MgxZn1-xO single quantum wells (QWs). In our computation, a realistic heterostructure potential is used, in which the influences from energy band bending, material doping and the built-in electric field induced by spontaneous and piezoelectric polarizations are taken into account. Furthermore, based on the Fermi's golden rule, the optical absorptions of electronic interband transitions in QWs, and their size and ternary mixed crystal effects are discussed. The results indicate that the increase of the Mg component in MgxZn1-xO enhances the build-in electric field, which forces electrons (holes) to approach to the left (right) barrier. This causes the interband transition absorption peak to decrease exponentially and to be blue-shifted. For different widths of QWs, the calculated results show that absorption peak decreases and transition energy shows a red shift with the increase of well width. The above conclusions are expected to give a theoretical guidance for improving the opto-electronic properties of materials and devices made of heterostructures with suitable optical absorption spectra and wave lengths.-
Keywords:
- ZnO/MgxZn1-xO quantum well /
- interband optical absorption /
- ternary mixed crystal effect /
- size effect
[1] Kang H S, Kim G H, Lim S H, Chang H W, Kim J H, Lee S Y 2008 Thin Solid Films 516 3147
[2] Shinde S S, Bhosale C H, Rajpure K Y 2012 Solid State Electron. 68 22
[3] Janthong B, Moriya Y, Hongsingthong A, Sichanugrist P, Konagai M 2013 Sol. Energy Mater. Sol. Cells 119 209
[4] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[5] Zhong M, Sheng D, Li C L, Xu S Q, Wei X 2014 Sol. Energy Mater. Sol. Cells 121 22
[6] Sonawane B K, Bhole M P, Patil D S 2009 Mater. Sci. Semicond. Process. 12 212
[7] Qu Y, Ban S L 2010 Acta Phys. Sin. 59 4863 (in Chinese) [屈媛, 班士良 2010 59 4863]
[8] Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 61 087201]
[9] Ning G H, Zhao X P, Li J 2004 Opt. Mater. 27 1
[10] Ding R, Xu C X, Gu B X, Shi Z L, Wang H T, Ba L, Xiao Z D 2010 J. Mater. Sci. Technol. 26 601
[11] Look D C 2001 Mater. Sci. Eng. B 80 383
[12] Liu W W, Yao B, Li B H, Li Y F, Zheng J, Zhang Z Z, Shan C X, Zhang J Y, Shen D Z, Fan X W 2010 Solid State Sci. 12 1567
[13] Khan M A, Skogman R A, van Hove J M, Krishnankutty S, Kolbas R M 1990 Appl. Phys. Lett. 56 1257
[14] Berland K, Stattin M, Farivar R, Sultan D M S, Hyldgaard P, Larsson A, Wang S M, Andersson T G 2010 Appl. Phys. Lett. 97 043507
[15] Fan W J, Abiyasa A P, Tan S T, Yu S F, Sun X W, Xia J B, Yeo Y C, Li M F, Chong T C 2006 J. Cryst. Growth 287 28
[16] Zhu J, Ban S L, Ha S H 2013 Superlattices Microstruct. 56 92
[17] Yamamoto K, Tsuboi T, Ohashi T, Tawara T, Gotoh H, Nakamura A, Temmyo J 2010 J. Cryst. Growth 312 1703
[18] Li J M, L Y W, Li D B, Han X X, Zhu Q S, Liu X L, Wang Z G 2004 J. Vac. Sci. Technol. B 22 2568
[19] Zippel J, Heitsch S, Stölzel M, Mller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H, Grundmann M 2010 J. Lumin. 130 520
[20] Koffyberg F P 1976 Phys. Rev. B 13 4470
[21] Roessler D M, Walker W C 1967 Phys. Rev. 159 733
[22] Davis J A, Dao L V, Wen X, Ticknor C, Hannaford P, Coleman V A, Tan H H, Jagadish C, Koike K, Sasa S, Inoue M, Yano M 2008 Nanotechnology 19 055205
[23] Ha S H, Ban S L 2007 J. Inner Mongolia Univ. (Nat. Sci. Ed.) 38 272 (in Chinese) [哈斯花, 班士良 2007 内蒙古大学学报 (自然科学版) 38 272]
[24] Chi Y M, Shi J J 2008 J. Lumin. 128 1836
[25] Doyeol A, Park S H 2006 J. Semicond. Technol. Sci. 6 125
[26] Zhang X, Li X M, Chen T L, Bian J M, Zhang C Y 2005 Thin Solid Films 492 248
[27] Su S C, Lu Y M, Zhang Z Z, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Surf. Sci. 254 4886
[28] Yuan J R, Li Y Q, Deng X H 2006 J. Nanchang Univ. (Eng. Technol. Ed.) 28 329 (in Chinese) [袁吉仁, 李要球, 邓新华 2006 南昌大学学报 (工科版) 28 329]
-
[1] Kang H S, Kim G H, Lim S H, Chang H W, Kim J H, Lee S Y 2008 Thin Solid Films 516 3147
[2] Shinde S S, Bhosale C H, Rajpure K Y 2012 Solid State Electron. 68 22
[3] Janthong B, Moriya Y, Hongsingthong A, Sichanugrist P, Konagai M 2013 Sol. Energy Mater. Sol. Cells 119 209
[4] Sun H, Zhang Q F, Wu J L 2007 Acta Phys. Sin. 56 3479 (in Chinese) [孙晖, 张琦锋, 吴锦雷 2007 56 3479]
[5] Zhong M, Sheng D, Li C L, Xu S Q, Wei X 2014 Sol. Energy Mater. Sol. Cells 121 22
[6] Sonawane B K, Bhole M P, Patil D S 2009 Mater. Sci. Semicond. Process. 12 212
[7] Qu Y, Ban S L 2010 Acta Phys. Sin. 59 4863 (in Chinese) [屈媛, 班士良 2010 59 4863]
[8] Yang F J, Ban S L 2012 Acta Phys. Sin. 61 087201 (in Chinese) [杨福军, 班士良 2012 61 087201]
[9] Ning G H, Zhao X P, Li J 2004 Opt. Mater. 27 1
[10] Ding R, Xu C X, Gu B X, Shi Z L, Wang H T, Ba L, Xiao Z D 2010 J. Mater. Sci. Technol. 26 601
[11] Look D C 2001 Mater. Sci. Eng. B 80 383
[12] Liu W W, Yao B, Li B H, Li Y F, Zheng J, Zhang Z Z, Shan C X, Zhang J Y, Shen D Z, Fan X W 2010 Solid State Sci. 12 1567
[13] Khan M A, Skogman R A, van Hove J M, Krishnankutty S, Kolbas R M 1990 Appl. Phys. Lett. 56 1257
[14] Berland K, Stattin M, Farivar R, Sultan D M S, Hyldgaard P, Larsson A, Wang S M, Andersson T G 2010 Appl. Phys. Lett. 97 043507
[15] Fan W J, Abiyasa A P, Tan S T, Yu S F, Sun X W, Xia J B, Yeo Y C, Li M F, Chong T C 2006 J. Cryst. Growth 287 28
[16] Zhu J, Ban S L, Ha S H 2013 Superlattices Microstruct. 56 92
[17] Yamamoto K, Tsuboi T, Ohashi T, Tawara T, Gotoh H, Nakamura A, Temmyo J 2010 J. Cryst. Growth 312 1703
[18] Li J M, L Y W, Li D B, Han X X, Zhu Q S, Liu X L, Wang Z G 2004 J. Vac. Sci. Technol. B 22 2568
[19] Zippel J, Heitsch S, Stölzel M, Mller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H, Grundmann M 2010 J. Lumin. 130 520
[20] Koffyberg F P 1976 Phys. Rev. B 13 4470
[21] Roessler D M, Walker W C 1967 Phys. Rev. 159 733
[22] Davis J A, Dao L V, Wen X, Ticknor C, Hannaford P, Coleman V A, Tan H H, Jagadish C, Koike K, Sasa S, Inoue M, Yano M 2008 Nanotechnology 19 055205
[23] Ha S H, Ban S L 2007 J. Inner Mongolia Univ. (Nat. Sci. Ed.) 38 272 (in Chinese) [哈斯花, 班士良 2007 内蒙古大学学报 (自然科学版) 38 272]
[24] Chi Y M, Shi J J 2008 J. Lumin. 128 1836
[25] Doyeol A, Park S H 2006 J. Semicond. Technol. Sci. 6 125
[26] Zhang X, Li X M, Chen T L, Bian J M, Zhang C Y 2005 Thin Solid Films 492 248
[27] Su S C, Lu Y M, Zhang Z Z, Li B H, Shen D Z, Yao B, Zhang J Y, Zhao D X, Fan X W 2008 Appl. Surf. Sci. 254 4886
[28] Yuan J R, Li Y Q, Deng X H 2006 J. Nanchang Univ. (Eng. Technol. Ed.) 28 329 (in Chinese) [袁吉仁, 李要球, 邓新华 2006 南昌大学学报 (工科版) 28 329]
计量
- 文章访问数: 6622
- PDF下载量: 446
- 被引次数: 0