Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulations of the size effect on the elastic properties and the inherent mechanism of metallic nanowire

Yang Xi-Yuan Quan Jun

Citation:

Simulations of the size effect on the elastic properties and the inherent mechanism of metallic nanowire

Yang Xi-Yuan, Quan Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper molecular dynamics (MD) method and the modified analytical embedded atom model (MAEAM) are used to investigate the size effect on the elastic properties of Ni, Al and V nanowires and the role the free surface plays. For convenience of comparison, the elastic properties of these corresponding perfect bulk materials are also studied. Results obtained indicate that the calculated values of the elastic properties of these perfect materials are in good agreement with those previously given theoretical and experimental ones. But the calculated bulk moduli of the nanowires, which are lower than those of the prefect materials, increase exponentially with increasing size of the nanowire and are nearly close to a constant (180.20 GPa for the Ni nanowire, 83.98 GPa for the Al nanowire and 162.48 GPa for the V nanowire). Meanwhile, the surface energy of the nanowire decreases exponentially with the increase of its size and reaches a minimal value (1.84 J·m-2 for the Ni nanowire, 0.77 J·m-2 for the Al nanowire, and 1.71 J·m-2 for the V nanowire), which is consistent with the corresponding bulk material. And the critical value of the size, which has a distinct effect on the elastic properties and the surface energy, is about 5.0 nm for all nanowires. On this basis, the free surface dependence of the elastic properties of these metallic nanowires and the inherent mechanisms are further discussed by exploring the size effect on the surface energies of Ni, Al and V nanowires and their distribution characteristics, showing that the free surface plays a more and more important role in the diminution of the elastic properties of nanowires as the size decreases. The mode of the surface impacting on the elastic properties of nanowire is described as follows:The surface first reduces the compressional stress of the internal core region of nanowires and then the reduced compressional stress results further in the decrease in the elastic properties of nanowires.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304276, 11147152), and the Talent Project of Lingnan Normal University (Grant No. ZL1405).
    [1]

    Iijima S, Qin L C, Hong B H, Bae S C, Youn S Y, Kim K S 2002 Science 296 611

    [2]

    Arivalagan K, Ravichandran S, Rangasamy K 2011 Int. J. Chem. Tech. Res. 3 534

    [3]

    Zhang J Y, Liang X, Zhang P, Wu K, Liu G, Sun J 2014 Acta Mater. 66 302

    [4]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221

    [5]

    Zheng X P, Cao Y P, Li B, Feng X Q, Wang G F 2010 Nanotechnology 21 205702

    [6]

    Sadeghian H, Goosen J F L, Bossche A, Van Keulen F 2009 Appl. Phys. Lett. 94 231908

    [7]

    Asthana A, Momeni K, Prasad A, Yap Y K, Yassar R S 2011 Nanotechnology 22 265712

    [8]

    Yao H Y, Yun G H, Fan W L 2013 Chin. Phys. B 22 106201

    [9]

    Peng C, Ganesan Y W, Lu Y, Lou J 2012 J. Appl. Phys. 111 063524

    [10]

    Wang Y J, Gao G J, Ogata S 2013 Appl. Phys. Lett. 102 041902

    [11]

    Yu Q, Qi L, Chen K, Mishra R K, Li J, Minor A M 2012 Nano Lett. 12 887

    [12]

    Chen L Y, Richter G, Sullivan J P, Gianola D S 2012 Phys. Rev. Lett. 109 125503

    [13]

    Hu W Y, Masahiro F. 2002 Modelling Simul. Mater. Sci. Eng. 10 707

    [14]

    Nosé S 1984 J. Chem. Phys. 81 511

    [15]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [16]

    Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [17]

    Wang S Q, Ye H Q 2003 J. Phys. :Condens. Matt. 15 5307

    [18]

    Cagin T, John R R 1988 Phys. Rev. B 38 7940

    [19]

    Mishin Y 2004 Acta Mater. 52 1451

    [20]

    Simmons G, Wang H 1977 Single crystal elastic constants and calculated aggregate properties (Cambridge MA:MIT Press) pp7-12

    [21]

    Li X Q, Zhang H L, Lu S, Johnsson B, Vitos L 2012 Phys. Rev. B 86 014105

    [22]

    Li X Q, Zhang C, Zhao J J, Johnsson B 2011 Comp. Mater. Sci. 50 2727

    [23]

    Mehl M J, Papaconstantopoulos D A 1996 Phys. Rev. B 54 4519

    [24]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 5844

    [25]

    Bolef D I, Smith R E, Miller J G 1972 Phys. Rev. B 3 4100

    [26]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [27]

    Jing G Y, Duan H L, Sun X M, Zhang Z S, Xu J, Li Y D, Wang J X, Yu D P 2006 Phys. Rev. B 73 235409

    [28]

    Kumar K S, Swygenhoven H V, Suresh S 2003 Acta Mater. 51 5743

    [29]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [30]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [31]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [32]

    Wang B, Zhang J M, Lu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为 2011 60 016601]

    [33]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha:Hunan University press) pp18-25 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用--原子尺度材料设计理论 (长沙:湖南大学出版社) 第18-25页]

    [34]

    Bozzolo G, Ferrante J, Noebe R D, Good B, Honecy F S, Abel P 1999 Comp. Mater. Sci. 15 169

    [35]

    de Boer F R, Room R, Mattens W C M, Miedema A R, Niessen A K 1988 Cohesion in metals:Transition Metal Alloys (North-Holland:Amsterdam) pp1-45

    [36]

    Kumikov V K, Khokonov Kh B 1983 J. Appl. Phys. 54 1346

    [37]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [38]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45

    [39]

    Guellil A M, Adams J B 1992 J. Mater. Res. 7 639

    [40]

    Zhang F Y, Teng Y Y, Zhang M X, Zhu S L 2005 Corr. Sci. Prot Tech. 17 47 (in Chinese) [张芳英, 腾英元, 张美霞, 朱圣龙 2005 腐蚀科学与防护技术 17 47]

    [41]

    Rodriguez A M, Bozzolo G, Ferrante J 1993 Surf. Sci. 289 100

    [42]

    Mutasa B, Farkas D 1998 Surf. Sci. 415 312

    [43]

    Ouyang G, Li X L, Tan X, Yang G W 2006 Appl. Phys. Lett. 89 031904

    [44]

    Huang W J, Sun R, Tao J, Menard L D, Nuzzo J M, Zuo J M 2008 Nat. Mater. 7 308

    [45]

    Wen Y H, Shao G F, Zhu Z Z 2008 Acta Phys. Sin. 57 1013 (in Chinese) [文玉华, 邵桂芳, 朱梓忠 2008 57 1013]

    [46]

    Phillpot S R, Wolf D, Glieter H 1995 J. Appl. Phys. 78 847

    [47]

    Yang X Y, Xiao S F, Hu W Y 2013 J. Appl. Phys. 114 094303

  • [1]

    Iijima S, Qin L C, Hong B H, Bae S C, Youn S Y, Kim K S 2002 Science 296 611

    [2]

    Arivalagan K, Ravichandran S, Rangasamy K 2011 Int. J. Chem. Tech. Res. 3 534

    [3]

    Zhang J Y, Liang X, Zhang P, Wu K, Liu G, Sun J 2014 Acta Mater. 66 302

    [4]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 109 4221

    [5]

    Zheng X P, Cao Y P, Li B, Feng X Q, Wang G F 2010 Nanotechnology 21 205702

    [6]

    Sadeghian H, Goosen J F L, Bossche A, Van Keulen F 2009 Appl. Phys. Lett. 94 231908

    [7]

    Asthana A, Momeni K, Prasad A, Yap Y K, Yassar R S 2011 Nanotechnology 22 265712

    [8]

    Yao H Y, Yun G H, Fan W L 2013 Chin. Phys. B 22 106201

    [9]

    Peng C, Ganesan Y W, Lu Y, Lou J 2012 J. Appl. Phys. 111 063524

    [10]

    Wang Y J, Gao G J, Ogata S 2013 Appl. Phys. Lett. 102 041902

    [11]

    Yu Q, Qi L, Chen K, Mishra R K, Li J, Minor A M 2012 Nano Lett. 12 887

    [12]

    Chen L Y, Richter G, Sullivan J P, Gianola D S 2012 Phys. Rev. Lett. 109 125503

    [13]

    Hu W Y, Masahiro F. 2002 Modelling Simul. Mater. Sci. Eng. 10 707

    [14]

    Nosé S 1984 J. Chem. Phys. 81 511

    [15]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [16]

    Swope W C, Anderson H C, Berens P H, Wilson K R 1982 J. Chem. Phys. 76 637

    [17]

    Wang S Q, Ye H Q 2003 J. Phys. :Condens. Matt. 15 5307

    [18]

    Cagin T, John R R 1988 Phys. Rev. B 38 7940

    [19]

    Mishin Y 2004 Acta Mater. 52 1451

    [20]

    Simmons G, Wang H 1977 Single crystal elastic constants and calculated aggregate properties (Cambridge MA:MIT Press) pp7-12

    [21]

    Li X Q, Zhang H L, Lu S, Johnsson B, Vitos L 2012 Phys. Rev. B 86 014105

    [22]

    Li X Q, Zhang C, Zhao J J, Johnsson B 2011 Comp. Mater. Sci. 50 2727

    [23]

    Mehl M J, Papaconstantopoulos D A 1996 Phys. Rev. B 54 4519

    [24]

    Söderlind P, Eriksson O, Wills J M, Boring A M 1993 Phys. Rev. B 48 5844

    [25]

    Bolef D I, Smith R E, Miller J G 1972 Phys. Rev. B 3 4100

    [26]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [27]

    Jing G Y, Duan H L, Sun X M, Zhang Z S, Xu J, Li Y D, Wang J X, Yu D P 2006 Phys. Rev. B 73 235409

    [28]

    Kumar K S, Swygenhoven H V, Suresh S 2003 Acta Mater. 51 5743

    [29]

    Liu S S, Wen Y H, Zhu Z Z 2008 Chin. Phys. B 17 2621

    [30]

    Mehl M J, Osburn J E, Papaconstantopoulos D A, Klein B M 1990 Phys. Rev. B 41 10311

    [31]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983

    [32]

    Wang B, Zhang J M, Lu Y D, Gan X Y, Yin B X, Xu K W 2011 Acta Phys. Sin. 60 016601 (in Chinese) [王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为 2011 60 016601]

    [33]

    Zhang B W, Hu W Y, Shu X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Changsha:Hunan University press) pp18-25 (in Chinese) [张邦维, 胡望宇, 舒小林 2003 嵌入原子方法理论及其在材料科学中的应用--原子尺度材料设计理论 (长沙:湖南大学出版社) 第18-25页]

    [34]

    Bozzolo G, Ferrante J, Noebe R D, Good B, Honecy F S, Abel P 1999 Comp. Mater. Sci. 15 169

    [35]

    de Boer F R, Room R, Mattens W C M, Miedema A R, Niessen A K 1988 Cohesion in metals:Transition Metal Alloys (North-Holland:Amsterdam) pp1-45

    [36]

    Kumikov V K, Khokonov Kh B 1983 J. Appl. Phys. 54 1346

    [37]

    Tyson W R, Miller W A 1977 Surf. Sci. 62 267

    [38]

    Finnis M W, Sinclair J E 1984 Phil. Mag. A 50 45

    [39]

    Guellil A M, Adams J B 1992 J. Mater. Res. 7 639

    [40]

    Zhang F Y, Teng Y Y, Zhang M X, Zhu S L 2005 Corr. Sci. Prot Tech. 17 47 (in Chinese) [张芳英, 腾英元, 张美霞, 朱圣龙 2005 腐蚀科学与防护技术 17 47]

    [41]

    Rodriguez A M, Bozzolo G, Ferrante J 1993 Surf. Sci. 289 100

    [42]

    Mutasa B, Farkas D 1998 Surf. Sci. 415 312

    [43]

    Ouyang G, Li X L, Tan X, Yang G W 2006 Appl. Phys. Lett. 89 031904

    [44]

    Huang W J, Sun R, Tao J, Menard L D, Nuzzo J M, Zuo J M 2008 Nat. Mater. 7 308

    [45]

    Wen Y H, Shao G F, Zhu Z Z 2008 Acta Phys. Sin. 57 1013 (in Chinese) [文玉华, 邵桂芳, 朱梓忠 2008 57 1013]

    [46]

    Phillpot S R, Wolf D, Glieter H 1995 J. Appl. Phys. 78 847

    [47]

    Yang X Y, Xiao S F, Hu W Y 2013 J. Appl. Phys. 114 094303

  • [1] Zou Xing, Zhu Zhe, Fang Wen-Xiao. Simulation of surface stress and solid solution modification phase field of nanowire electrocaloric effect. Acta Physica Sinica, 2024, 73(10): 100501. doi: 10.7498/aps.73.20240105
    [2] Wang Fei, Li Quan-Jun, Hu Kuo, Liu Bing-Bing. Electron microscopic study on high-pressure induced deformation of nano-TiO2. Acta Physica Sinica, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [3] Xu Shuai, Yang Yun-Yun, Liu Xing, He Ji-Zhou. Performance optimization of three-terminal nanowire refrigerator based on one-dimensional ballistic conductor. Acta Physica Sinica, 2022, 71(2): 020501. doi: 10.7498/aps.71.20211077
    [4] Shang Shuai-Peng, Lu Yong-Jun, Wang Feng-Hui. Surface effects on buckling of nanowire electrode. Acta Physica Sinica, 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [5] Lu Bin, Wang Da-Wei, Chen Yu-Lei, Cui Yan, Miao Yuan-Hao, Dong Lin-Peng. Capacitance model for nanowire gate-all-around tunneling field-effect-transistors. Acta Physica Sinica, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [6] Hua Yu-Chao, Cao Bing-Yang. A model for phonon thermal conductivity of multi-constrained nanostructures. Acta Physica Sinica, 2015, 64(14): 146501. doi: 10.7498/aps.64.146501
    [7] Yang Xi-Yuan, Zhang Jin-Ping, Wu Yu-Rong, Liu Fu-Sheng. Simulation studies on the influence of nanofilm thickness on the elastic properties of B2-NiAl. Acta Physica Sinica, 2015, 64(1): 016803. doi: 10.7498/aps.64.016803
    [8] Yang Meng-Shi, Li Xin, Ye Zhi-Peng, Chen Liang, Xu Can, Chu Xiu-Xiang. Size effect of silk fibroin peptide chains in the growth process. Acta Physica Sinica, 2013, 62(23): 236101. doi: 10.7498/aps.62.236101
    [9] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [10] Qin Yu-Xiang, Liu Kai-Xuan, Liu Chang-Yu, Sun Xue-Bin. P-type conductivity and NO2 sensing properties for V-doped W18O49 nanowires at room temperature. Acta Physica Sinica, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [11] Huang Xiao-Lin, Hou Li-Zhen, Yu Bo-Wen, Chen Guo-Liang, Wang Shi-Liang, Ma Liang, Liu Xin-Li, He Yue-Hui. Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Acta Physica Sinica, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [12] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [13] Zhou Guo-Rong, Teng Xin-Ying, Wang Yan, Geng Hao-Ran, Hur Bo-Young. Size effect on the freezing behavior of aluminum nanowires. Acta Physica Sinica, 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [14] Zhang Chun-Zu, Zhang Ying, Zhou Zhi-Dong. Size effect on phase transition temperature of epitaxial ferroelectric films. Acta Physica Sinica, 2010, 59(9): 6620-6625. doi: 10.7498/aps.59.6620
    [15] Xu Zhen-Hai, Yuan Lin, Shan De-Bin, Guo Bin. Atomistic simulation of yield mechanism of single crystal copper nanowires. Acta Physica Sinica, 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [16] Lü Hui-Min, Chen Guang-De, Yan Guo-Jun, Ye Hong-Gang. The growth mechanism of monocrystal aluminum nitride nanowires at low temperature. Acta Physica Sinica, 2007, 56(5): 2808-2812. doi: 10.7498/aps.56.2808
    [17] Xu Can, Cao Juan, Gao Chen-Yang. Calculation of structure and properties of one-dimensional silica nanomaterials based on first-principle. Acta Physica Sinica, 2006, 55(8): 4221-4225. doi: 10.7498/aps.55.4221
    [18] Zhang Yun, Zhang Bo-Ping, Jiao Li-Shi, Li Xiang-Yang. Microstructure and photoabsorption of Au/SiO2 nano-composite films. Acta Physica Sinica, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
    [19] Zhang Zhi, Chen Chun-Ling, Wang Zhao-Long, Yu Dong-Man. Elastic behaviour of Nd60Al10Fe20Co10 bulk metallic glass under pressure. Acta Physica Sinica, 2006, 55(11): 5975-5979. doi: 10.7498/aps.55.5975
    [20] Miao Zhi-Wu, Ding Jian-Wen, Yan Xiao-Hong, Tang Na-Si. Effect of distortion on hopping conductivity:ThueMorse nanostructured model. Acta Physica Sinica, 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
Metrics
  • Abstract views:  6535
  • PDF Downloads:  203
  • Cited By: 0
Publishing process
  • Received Date:  13 November 2014
  • Accepted Date:  31 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map