-
In order to improve the temporal resolution of photomultiplier tubes, our research group has conducted the in-depth research on photomultiplier tubes based on microchannel plates that are widely used at present. The time resolution of photomultiplier tube based on microchannel plate is limited by the transit time of photoelectric signal in each part, including the transit time of photoelectric signal in the transmission process of photocathode to microchannel plate, the transit time of photoelectric signal in microchannel plate time, the transit time of the photoelectric signal from the microchannel plate to the detector anode, and the transit time of the photoelectric signal on the anode to the electrode port. The transit time of the whole process has a certain degree of influence on the time information measurement of the optoelectronic signal. In this study, various parameters affecting the time resolution of the photomultiplier tube are analyzed, and it is found that the different positions of the photoelectron signal on the anode will bring errors to the measurement of the arrival time of the signal at the anode, and the photoelectric signal is transmitted to the electrode port at the affected point of the anode The spent time will cause the signal measurement time to lag behind the real time, which indirectly affects the time resolution of the system. Therefore, a specific study is carried out on the time measurement error of the signal on the anode, and it is determined that the difference of the photoelectron signal on the anode position is an important factor causing the signal time measurement error, and a simple and effective method of compensating for error is proposed. In the research process, the delay line anode is used, and the positional resolution principle of the photoelectric signal is used to obtain the position information of the photoelectron signal on the anode, and the position information is converted into the time information transmitted from the position to the electrode port. The theoretical value of the transit time on the anode is offset, eliminating unnecessary time in the time-of-arrival measurement of the photoelectron signal. The time measurement error of the optoelectronic signal is compensated for by this time information. The experimental results show that the error compensation method can effectively improve the time measurement accuracy of optoelectronic signals, and provide solutions and theoretical basis for improving the time resolution of photomultiplier tubes based on microchannel plates.
-
Keywords:
- photomultiplier tube /
- measurement error /
- time resolution /
- delay line anode
[1] 高峰, 李峰辉, 李娇, 易茜, 陈琛 2014 天津大学学报 (自然科学与工程技术版) 47 518Google Scholar
Gao F, Li F H, Li J, Yi Q, Chen C 2014 J. Tianjin Univ. (Sci. Technol.) 47 518Google Scholar
[2] Hirvonen L M, Becker W, Milnes J, Conneely T, Smietana S, Marois A L, Jagutzki O, Suhling K 2016 Appl. Phys. Lett. 109 071101Google Scholar
[3] 王俊, 徐波, 叶志成, 陆文强, 郑建亚, 夏顺保, 高立模 2006 物理实验 26 44Google Scholar
Wang J, Xu B, Ye Z C, Lu W Q, Zheng J Y, Xia S B, Gao L M 2006 Phys. Experiment. 26 44Google Scholar
[4] Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P 2006 SPIE Opt. East 6372 229Google Scholar
[5] Rech I, Gulinatti A, Crotti M, Cammi C, Maccagnani P, Ghioni M 2011 J. Mod. Opt. 58 233Google Scholar
[6] Michalet X, Siegmund O H W, Vallerga J V, Jelinsky P, Millaud J E, Weiss S 2006 Proc. SPIE Int. Soc. Opt. Eng. 6092 141Google Scholar
[7] 贺青, 刘剑, 韦联福 2022 广西师范大学学报(自然科学版) 40 in pressGoogle Scholar
He Q, Liu J, Wei L F 2022 J. Guangxi Normal Univ. (Nat. Sci). 40 in pressGoogle Scholar
[8] 程碑彤, 代千, 谢修 敏, 徐强, 张杉, 宋海智 2022 激光技术 46 in press
Cheng B T, Dai Q, Xie X M, Xu Q, Zhang S, Song H Z 2022 Laser Technology 46 in press
[9] 张雪皎, 万钧力 2007 激光杂志 28 13Google Scholar
Zhang X J, Wan J L 2007 Laser J. 28 13Google Scholar
[10] 雷帆朴 2019 博士学位论文 (北京: 中国科学院大学)
Lei F P 2019 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[11] 鄢秋荣 2012 博士学位论文 (北京: 中国科学院大学)
Yan Q R 2012 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[12] Jagutzki O, Lapington J S, Worth L B C, Spillman U, Mergel V, Schmidt-Böcking H 2002 Nucl. Instrum. Meth. A 477 256Google Scholar
[13] 缑永胜 2017 博士学位论文 (北京: 中国科学院大学)
Gou Y S 2017 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[14] 杨文正 2010 博士学位论文 (北京: 中国科学院大学)
Yang W Z 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[15] 蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2009 强激光与粒子束 21 1542
Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2009 High Power Laser Partic. Beams 21 1542
[16] 蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2008 应用光学 29 895Google Scholar
Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2008 J. Appl. Opt. 29 895Google Scholar
[17] Jagutzki O, Mergel V, Ullmann-Pfleger K, Spielberger L, Schmidt-Boecking H W 1998 Proc. SPIE 3438 322Google Scholar
[18] Jagutzki O, Barnstedt J, Spillmann U, Spielberger L, Mergel V, Ullmann-Pfleger K, Grewing M, Schmidt-Boecking H W 1999 Int. Soc. Opt. Photon. 3764 61
[19] 雷帆朴, 白永林, 朱炳利, 白晓红, 秦君军, 徐鹏, 侯洵 2017 光谱学与光谱分析 37 2989Google Scholar
Lei F P, Bai Y L, Zhu B L, Bai X H, Qin J J, Xu P, Hou X 2017 Spectrosc. Spect. Anal. 37 2989Google Scholar
[20] 潘京生 2021 激光与光电子学进展 58 80Google Scholar
Pan J S 2021 Laser Optoelectron. P. 58 80Google Scholar
-
表 1 端到端延时测试结果
Table 1. End-to-end latency test results.
端到端延迟/ns 平均幅值/mV 衰减/% X 方向 4.75 286 42.8 Y 方向 6.15 336 32.8 表 2 时间测量误差补偿结果
Table 2. Time measurement error compensation results.
随机位置点 到达时间测试值/ns 到达时间实际值/ns a 7.14 4.956 b 6.78 5.019 c 6.48 5.029 d 5.925 4.747 e 6.5 4.918 f 5.381 4.351 g 6.667 5.062 h 6.358 4.932 -
[1] 高峰, 李峰辉, 李娇, 易茜, 陈琛 2014 天津大学学报 (自然科学与工程技术版) 47 518Google Scholar
Gao F, Li F H, Li J, Yi Q, Chen C 2014 J. Tianjin Univ. (Sci. Technol.) 47 518Google Scholar
[2] Hirvonen L M, Becker W, Milnes J, Conneely T, Smietana S, Marois A L, Jagutzki O, Suhling K 2016 Appl. Phys. Lett. 109 071101Google Scholar
[3] 王俊, 徐波, 叶志成, 陆文强, 郑建亚, 夏顺保, 高立模 2006 物理实验 26 44Google Scholar
Wang J, Xu B, Ye Z C, Lu W Q, Zheng J Y, Xia S B, Gao L M 2006 Phys. Experiment. 26 44Google Scholar
[4] Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P 2006 SPIE Opt. East 6372 229Google Scholar
[5] Rech I, Gulinatti A, Crotti M, Cammi C, Maccagnani P, Ghioni M 2011 J. Mod. Opt. 58 233Google Scholar
[6] Michalet X, Siegmund O H W, Vallerga J V, Jelinsky P, Millaud J E, Weiss S 2006 Proc. SPIE Int. Soc. Opt. Eng. 6092 141Google Scholar
[7] 贺青, 刘剑, 韦联福 2022 广西师范大学学报(自然科学版) 40 in pressGoogle Scholar
He Q, Liu J, Wei L F 2022 J. Guangxi Normal Univ. (Nat. Sci). 40 in pressGoogle Scholar
[8] 程碑彤, 代千, 谢修 敏, 徐强, 张杉, 宋海智 2022 激光技术 46 in press
Cheng B T, Dai Q, Xie X M, Xu Q, Zhang S, Song H Z 2022 Laser Technology 46 in press
[9] 张雪皎, 万钧力 2007 激光杂志 28 13Google Scholar
Zhang X J, Wan J L 2007 Laser J. 28 13Google Scholar
[10] 雷帆朴 2019 博士学位论文 (北京: 中国科学院大学)
Lei F P 2019 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[11] 鄢秋荣 2012 博士学位论文 (北京: 中国科学院大学)
Yan Q R 2012 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[12] Jagutzki O, Lapington J S, Worth L B C, Spillman U, Mergel V, Schmidt-Böcking H 2002 Nucl. Instrum. Meth. A 477 256Google Scholar
[13] 缑永胜 2017 博士学位论文 (北京: 中国科学院大学)
Gou Y S 2017 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[14] 杨文正 2010 博士学位论文 (北京: 中国科学院大学)
Yang W Z 2010 Ph. D. Dissertation (Beijing: Chinese Academy of Sciences University) (in Chinese)
[15] 蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2009 强激光与粒子束 21 1542
Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2009 High Power Laser Partic. Beams 21 1542
[16] 蔡厚智, 刘进元, 牛丽红, 廖华, 周军兰 2008 应用光学 29 895Google Scholar
Cai H Z, Liu J Y, Niu L H, Liao H, Zhou J L 2008 J. Appl. Opt. 29 895Google Scholar
[17] Jagutzki O, Mergel V, Ullmann-Pfleger K, Spielberger L, Schmidt-Boecking H W 1998 Proc. SPIE 3438 322Google Scholar
[18] Jagutzki O, Barnstedt J, Spillmann U, Spielberger L, Mergel V, Ullmann-Pfleger K, Grewing M, Schmidt-Boecking H W 1999 Int. Soc. Opt. Photon. 3764 61
[19] 雷帆朴, 白永林, 朱炳利, 白晓红, 秦君军, 徐鹏, 侯洵 2017 光谱学与光谱分析 37 2989Google Scholar
Lei F P, Bai Y L, Zhu B L, Bai X H, Qin J J, Xu P, Hou X 2017 Spectrosc. Spect. Anal. 37 2989Google Scholar
[20] 潘京生 2021 激光与光电子学进展 58 80Google Scholar
Pan J S 2021 Laser Optoelectron. P. 58 80Google Scholar
Catalog
Metrics
- Abstract views: 3606
- PDF Downloads: 64
- Cited By: 0