Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation

Xu Xin-Ke Liu Guo-Dong Liu Bing-Guo Chen Feng-Dong Zhuang Zhi-Tao Gan Yu

Citation:

High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation

Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The laser frequency scanning interferometer has several advantages, such as non-contact, high accuracy and low signal to noise ratio in detection. In order to achieve higher resolution of the laser frequency scanning interferometer, increasing the tuning range of the light source and reducing the tuning non-linearity have become the key factors. The commonly used method is to correct the non-linearity of the wide bandwidth external cavity tuning laser by a fiber optical auxiliary interferometer constructed external frequency sampling clock. When using the broadband external cavity tuning laser and the auxiliary interferometer with an optical path difference of 220 m, it is found experimentally that the single-mode fiber dispersion makes the frequency of sampled signals change over time, causing the spectrum to broaden and resolution to decline. This paper has established the dispersion mismatch model which shows that the fiber dispersion of the auxiliary interferometer causes linear chirp frequency changes during the measurement of signals. The linear chirp frequency is proportional to the tuning bandwidth and measured distance. The phenomenon and theoretical model of dispersion mismatch is verified by experiments. The results for targets in the air are shown to linearly decrease as the tuning range increases with the maximum offset of 156.3 µm for the 20 nm tuning bandwidth. The experiment also proves the peak broadening intensifies with increasing distance measured, and thus verifies as the time delay of free space increase, and the peak broadening and distortion also increases. This result means that it will limit the ranging distance and make large errors in measurement result for long distance targets. The dispersion of the auxiliary interferometer should be compensated in the laser frequency scanning interferometer for large-sized high resolution measurements. In this paper, phase dispersion compensation method based on the evolution of peak variation distortion elimination is proposed, by taking the peak amplitude variation as the criterion; the phase compensation can offset the dispersion and improve the resolution. The original signal is multiplied by the complex phase compensation term, then regulating the phase compensation factor, the chirp becomes smaller as the phase compensation factor is approaching the distortion factor. Under the condition that the phase compensation factor is equal to the distortion factor, the chirp is offset. Then, the relationship between the amplitude and the peak FWHM is studied. It is found that the peak FWHM decreases while the amplitude shows a gradually increasing trend. Therefore, the amplitude can be referred to in order to determine whether the peak FWHM reaches the minimum. The resolution for target's peak can be improved by searching for the maximum amplitude of the spectrum and adjusting the phase distortion coefficient. The experiment shows that the peak FWHM of the target is obviously narrowed after dispersion compensation. The peak value becomes close to the theoretical resolution, and the static target at a distance of 975.216254 mm from the laser frequency scanning interferometer is measured. Results show the measurement accuracy of the interferometer is 584 nm. To further verify the accuracy of the laser frequency scanning interferometer, the laser frequency scanning interferometer is compared with the Renishaw laser interferometer in the measurement range of 0692 mm. The standard deviation between them is 4.5 m. The proposed method is put forward to provide basis for future studies on the large size high resolution laser frequency scanning interferometer.
      Corresponding author: Gan Yu, ganyu@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51275120, 61275096).
    [1]

    Tan L Q, Hua D X, Wang L, Gao F, Di H G 2014 Acta Phys. Sin. 63 224205 (in Chinese) [谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽 2014 63 224205]

    [2]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [3]

    Wen X D, Ning T G, You H D, Kang Z X, Li J, Li C, Feng T, Yu S W, Jian W 2014 Chin. Phys. Lett. 31 034203

    [4]

    Zhang R W, Sun X J, Yan W, Liu L, Li Y, Zhao J, Yan W X, Li H R 2014 Acta Phys. Sin. 63 140702 (in Chinese) [张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然 2014 63 140702]

    [5]

    Eric D M, Robert R M 2008 Opt. Express 16 13139

    [6]

    John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869

    [7]

    Tao L, Liu Z G, L T, Deng Z W, Gong H 2014 Acta Optica Sinica34 0212002 (in Chinese) [陶龙, 刘志刚, 吕涛, 邓忠文, 龚海 2014 光学学报 34 0212002]

    [8]

    Yan X, Dong J Q, Li Q H, Guo M S, Hu Y Q 2014 Chinese Journal of Lasers41 0908001 (in Chinese) [严鑫, 董俊卿, 李青会, 郭木森, 胡永庆 2014 中国激光 41 0908001]

    [9]

    Koichi I, Shin-ichiro M, Takao K, Takeo M 2011 IEEE Photon. Technol. Lett. 23 703

    [10]

    Ana B M, Zeb W B 2015 Appl. Opt. 54 5911

    [11]

    Brian J S, Dawn K G, Matthew S W, Mark E F 2005 Opt. Express 13 666

    [12]

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201 (in Chinese) [赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 63 194201]

    [13]

    Zeb W B, Wm R B, Brant K, Randy R R, Peter A R 2010 Appl. Opt. 49 213

    [14]

    Yusuke K, Fan X Y, Fumihiko I, He Z Y, Kazuo H 2013 J. Lightw. Technol. 31 866

    [15]

    Evan M L, Justin W K, Mark E F, Emily E H US Patent 105911[2014-07-03]

    [16]

    Maciej W, Vivek J S, Tony H K, James G F, Andrzej K, Jay S D 2004 Opt. Express 12 2404

  • [1]

    Tan L Q, Hua D X, Wang L, Gao F, Di H G 2014 Acta Phys. Sin. 63 224205 (in Chinese) [谭林秋, 华灯鑫, 汪丽, 高飞, 狄慧鸽 2014 63 224205]

    [2]

    Hao Y Q, Ye Q, Pan Z Q, Cai H W, Qu R H 2014 Chin. Phys. B 23 110703

    [3]

    Wen X D, Ning T G, You H D, Kang Z X, Li J, Li C, Feng T, Yu S W, Jian W 2014 Chin. Phys. Lett. 31 034203

    [4]

    Zhang R W, Sun X J, Yan W, Liu L, Li Y, Zhao J, Yan W X, Li H R 2014 Acta Phys. Sin. 63 140702 (in Chinese) [张日伟, 孙学金, 严卫, 刘磊, 李岩, 赵剑, 颜万祥, 李浩然 2014 63 140702]

    [5]

    Eric D M, Robert R M 2008 Opt. Express 16 13139

    [6]

    John D, Ben H, Andrew J L, Andrew J L, Armin J H R, Matthew S W 2014 Opt. Express 22 24869

    [7]

    Tao L, Liu Z G, L T, Deng Z W, Gong H 2014 Acta Optica Sinica34 0212002 (in Chinese) [陶龙, 刘志刚, 吕涛, 邓忠文, 龚海 2014 光学学报 34 0212002]

    [8]

    Yan X, Dong J Q, Li Q H, Guo M S, Hu Y Q 2014 Chinese Journal of Lasers41 0908001 (in Chinese) [严鑫, 董俊卿, 李青会, 郭木森, 胡永庆 2014 中国激光 41 0908001]

    [9]

    Koichi I, Shin-ichiro M, Takao K, Takeo M 2011 IEEE Photon. Technol. Lett. 23 703

    [10]

    Ana B M, Zeb W B 2015 Appl. Opt. 54 5911

    [11]

    Brian J S, Dawn K G, Matthew S W, Mark E F 2005 Opt. Express 13 666

    [12]

    Zhao C, Chen Z Y, Ding Z H, Li P, Shen Y, Ni Y 2014 Acta Phys. Sin. 63 194201 (in Chinese) [赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧 2014 63 194201]

    [13]

    Zeb W B, Wm R B, Brant K, Randy R R, Peter A R 2010 Appl. Opt. 49 213

    [14]

    Yusuke K, Fan X Y, Fumihiko I, He Z Y, Kazuo H 2013 J. Lightw. Technol. 31 866

    [15]

    Evan M L, Justin W K, Mark E F, Emily E H US Patent 105911[2014-07-03]

    [16]

    Maciej W, Vivek J S, Tony H K, James G F, Andrzej K, Jay S D 2004 Opt. Express 12 2404

  • [1] Wang Ju, Shao Qi, Yu Jin-Long, He Ke-Rui, Luo Hao, Ma Chuang, Cai Zi-Heng, Zheng Zi-Yue, Cai Ben. Laser ranging system based on double intensity modulation. Acta Physica Sinica, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [2] Sun Si-Tong, Ding Ying-Xing, Liu Wu-Ming. Research progress in quantum precision measurements based on linear and nonlinear interferometers. Acta Physica Sinica, 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [3] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [4] Huang Jun-Chao, Wang Ling-Ke, Duan Yi-Fei, Huang Ya-Feng, Liu Liang, Li Tang. Experimental study on 1/f intrinsic thermal noise in optical fibers. Acta Physica Sinica, 2019, 68(5): 054205. doi: 10.7498/aps.68.20181838
    [5] Huang Ke, Li Song, Ma Yue, Tian Xin, Zhou Hui, Zhang Zhi-Yu. Theoretical model and correction method of range walk error for single-photon laser ranging. Acta Physica Sinica, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [6] Sun Teng-Fei, Lu Peng, Zhuo Zhuang, Zhang Wen-Hao, Lu Jing-Qi. Dual-channel quantitative phase microscopy based on a single cube beamsplitter interferometer. Acta Physica Sinica, 2018, 67(14): 140704. doi: 10.7498/aps.67.20172722
    [7] He Yin-Zhu, Zhao Shi-Jie, Wei Hao-Yun, Li Yan. Traceable trans-scale heterodyne interferometer with subnanometer resolution. Acta Physica Sinica, 2017, 66(6): 060601. doi: 10.7498/aps.66.060601
    [8] Miao Yin-Ping, Jin Wei, Yang Fan, Lin Yue-Chuan, Tan Yan-Zhen, Hoi Lut. Advances in optical fiber photothermal interferometry for gas detection. Acta Physica Sinica, 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [9] Xiao Yang, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Wang Zi-Xiong, Xie Tian-Yuan, Yu Yang, Xue Ji-Qiang. Relationship between modulation frequency and range accuracy in the double polarization modulation range finding system. Acta Physica Sinica, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [10] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [11] Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry. Acta Physica Sinica, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [12] Wang Feng, Peng Xiao-Shi, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Quasi-isentropic experiment based on Shen Guang-III prototype laser facility with laser direct drive illumination. Acta Physica Sinica, 2015, 64(8): 085202. doi: 10.7498/aps.64.085202
    [13] Hei Ke-Fei, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Jia Shi, Wu Qiong, Xue Ji-Qiang. Variable frequency range finding technology based on double polarization modulation method and system implementation. Acta Physica Sinica, 2014, 63(10): 100602. doi: 10.7498/aps.63.100602
    [14] Wang Feng, Peng Xiao-Shi, Shan Lian-Qiang, Li Mu, Xue Quan-Xi, Xu Tao, Wei Hui-Yue. Experimental progress of quasi-isentropic compression under drive condition of Shen Guang-Ⅲ prototype laser facility. Acta Physica Sinica, 2014, 63(18): 185202. doi: 10.7498/aps.63.185202
    [15] Wang Guo-Chao, Yan Shu-Hua, Yang Jun, Lin Cun-Bao, Yang Dong-Xing, Zou Peng-Fei. Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs. Acta Physica Sinica, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [16] Man Tian-Long, Wan Yu-Hong, Jiang Zhu-Qing, Wang Da-Yong, Tao Shi-Quan. Measurement of the spatial coherence of extended light source by twin beams-interference method. Acta Physica Sinica, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [17] Cai Yuan-Xue, Zhang Yun-Dong, Dang Bo-Shi, Wu Hao, Wang Jin-Fang, Yuan Ping. High sensitivity slow light interferometer based on dispersiveproperty of Ⅲ-Ⅴ and Ⅱ-Ⅵ semiconductor materials. Acta Physica Sinica, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [18] Zheng Li-Ming, Wang Fa-Qiang, Liu Song-Hao. The influence of dispersion and loss on quantum key distribution system. Acta Physica Sinica, 2007, 56(4): 2180-2183. doi: 10.7498/aps.56.2180
    [19] Zheng Yuan, Yu Li, Yang Bo-Jun, Zhang Xiao-Guang. Three stage polarization mode dispersion compensator capable of compensating second order polarization mode dispersion. Acta Physica Sinica, 2002, 51(12): 2745-2749. doi: 10.7498/aps.51.2745
    [20] . Acta Physica Sinica, 1975, 24(5): 375-380. doi: 10.7498/aps.24.375
Metrics
  • Abstract views:  6889
  • PDF Downloads:  265
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2015
  • Accepted Date:  28 June 2015
  • Published Online:  05 November 2015

/

返回文章
返回
Baidu
map