Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spectral characteristics of low excited state of strontium monobromide molecule

Wu Dong-Lan Guo Zi-Yi Zhou Jun-Jie Ruan Wen Zeng Xue-Feng Xie An-Dong

Citation:

Spectral characteristics of low excited state of strontium monobromide molecule

Wu Dong-Lan, Guo Zi-Yi, Zhou Jun-Jie, Ruan Wen, Zeng Xue-Feng, Xie An-Dong
PDF
HTML
Get Citation
  • The electronic structures and single point energy of 14 lowest electronic states of 88Sr79Br molecule are optimized by using the internal contraction multi-reference configuration interaction method and relativistic effective core pseudo-potential basis. Because 88Sr79Br molecule belongs to heavy element system, the single point energy must be corrected to obtain more accurate spectral parameters. Therefore, Davidson is introduced to correct the energy inconsistency, nuclear valence correlation is used to correct the electron correlation effect of inner shell and valence shell, and the relativistic scalar effect is corrected by calculating the third-order Douglas-Kroll-Hess Hamilton single electron integral. According to the single point energy calculated by the modified optimization, the potential energy curves, electric dipole moments, and transition dipole moments of 14 lowest electronic states are obtained. Using the latest LEVEL8.0 program to fit the modified potential energy curve, the spectral constants, molecular constants and vibration energy levels of 5 lowest bound states of 88Sr79Br molecule are given. In order to explain the changing trend of spectral constants of homologous compounds, the spectral parameters of each compound are compared and analyzed in this paper. At the same time, the vibration energy levels and molecular constants of 88Sr81Br molecule are also fitted and calculated for analyzing the influence of isotopes. The comparative analysis shows that the results of 88Sr79Br molecule are in better agreement with the experimental values. Finally, the Franck-Condon factors are gained by fitting the optimized single point energy and transition dipole moment of 88Sr79Br molecule. The transition band with the largest factor and obvious diagonalization is selected by analyzing the Franck-Condon factor of each transition band, and whether it meets the conditions for selecting laser cooling molecular system is judged. The radiation lifetimes of the transitions from the lowest two excited states to the ground state are calculated by combining the transition dipole moment, Franck-Condon factor, single point energy and vibration energy level of each electronic state. The results of this paper are in good agreement with the experimental values, which shows that the method in this paper is reliable. These spectral characteristic parameters provide theoretical support for further experimental measurement and construction of molecular laser cooling scheme of 88Sr79Br molecule.
      Corresponding author: Wu Dong-Lan, wudonglan1216@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grand Nos. 11564019, 11147158), and Jiangxi Provincial Education Department Project, China (Grand No. GJJ211015).
    [1]

    Yang C L, Zhang X Y, Gao F, Ren T Q 2007 J. Mol. Struct. THEOCHEM 807 147Google Scholar

    [2]

    Wang C, Li N, Xia Y, Zhang X, Ge M, Liu Y, Li Q 2011 Comput. Theor. Chem. 963 319Google Scholar

    [3]

    Short C I, Hauschildt P H 2006 Astrophys. J. 641 494Google Scholar

    [4]

    Carlson K D, Claydon C R 1967 Adv. High Temp. Chem. 1 43Google Scholar

    [5]

    Hansen C J, Bergemann M, Cescutti G, Francois P, Arcones A, Karakas A I, Lind K, Chiappini C 2013 Astron. Astrophys. 551 1Google Scholar

    [6]

    Bergemann M, Hansen C J, Bautista M, Ruchti G 2012 Astron. Astrophys. 546 1Google Scholar

    [7]

    Caffau E, Andrievsky S, Korotin S, Origlia L, Oliva E, Sanna N, Ludwig H G, Bonifacio P 2016 Astron. Astrophys. 585 44Google Scholar

    [8]

    Törring T, Doebl K, Weiler G 1985 Chem. Phys. Lett. 117 539Google Scholar

    [9]

    Ernst W E, Schröder J O 1986 Z. Phys. D:At. Mol. Clusters 1 103Google Scholar

    [10]

    Keijzer F, Teule J M, Bulthuis J, de Graaff G J, Hilgeman M H, Janssen M H M, van Kleef E H, van Leuken J J, Stolte S 1996 Chem. Phys. 207 261Google Scholar

    [11]

    Coxon J A, Dickinson C S 1998 J. Mol. Spectrosc. 190 150Google Scholar

    [12]

    Gurvich L V, Ryabova V G, Khitrov A N 1973 Faraday Symp. Chem. Soc. 8 83Google Scholar

    [13]

    Hildenbrand D L 1977 J. Chem. Phys. 66 3526Google Scholar

    [14]

    Ernst W E, Schröder J O 1986 J. Mol. Spectrosc. 117 444Google Scholar

    [15]

    Dickinson C S, Coxon J A 2003 J. Mol. Spectrosc. 221 269Google Scholar

    [16]

    Schröder J O, Ernst W E 1985 J. Mol. Spectrosc. 112 413Google Scholar

    [17]

    Castano F, Sanchez Rayo M N, Pereira R, Adams J W, Husain D, Schifino J 1994 J. Photochem. Photobiol. , A 83 79Google Scholar

    [18]

    Gunduz S, Akman S 2014 Microchem. J. 116 1Google Scholar

    [19]

    Werner H J, Knowles P J, Knizia G, et al. 2012 MOLPRO, version 2012.1, a package of ab initio Programs

    [20]

    Peterson K A, Figgen D, Goll E, Stoll H, Dolg M 2003 J. Chem. Phys. 119 11099Google Scholar

    [21]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [23]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasi-bound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [26]

    Wu D L, Tan B, Wen Y F, Zeng X F, Xie A D, Yan B 2016 Spectrochim. Acta, Part A 161 101Google Scholar

    [27]

    Fu M K, Ma H T, Cao J W, Bian W S 2017 J. Chem. Phys. 146 134309Google Scholar

    [28]

    Adema Z, Makhlouf S, Taher F 2016 Comput. Theor. Chem. 1093 48Google Scholar

    [29]

    Liu L, Yang C L, Wang M S, Ma X G, Sun Z P 2019 Spectrochim. Acta, Part A 164 162Google Scholar

    [30]

    Huber K P, Herzberg G 1979 Constants of Diatonic Molecules, Molecular spectra molecular structure (Vol. IV) (NewYork: Van Nostrand Reinhold)

    [31]

    Wu D L, Lin C Q, Wen Y F, Xie A D, Yan B 2017 Chin. Phys. B 594 083101Google Scholar

    [32]

    魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰 2016 65 163101Google Scholar

    Wei C L, Liang G Y, Liu X T, Yan P Y, Yan B 2016 Acta. Phys. Sin. 65 163101Google Scholar

    [33]

    Zhang X M, Liang G Y, Li R, Shi D D, Liu Y C, Liu X S, Xu H F, Yan B 2014 Chem. Phys. 443 142Google Scholar

    [34]

    Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)

    [35]

    Zou W L, Liu W J 2005 J. Comput. Chem. 26 106Google Scholar

    [36]

    Bahrini C, Augé-Rochereau F, Rostas J, Taïeb G 2006 Chem. Phys. 330 130Google Scholar

  • 图 1  88Sr79Br分子5个激发态的势能曲线

    Figure 1.  The potential energy curves of 5 lowest electronic states of 88Sr79Br.

    图 2  88Sr79Br分子5个束缚态的电偶极矩

    Figure 2.  The permanent dipole moments of 5 lowest electronic states of 88Sr79Br.

    图 3  88Sr79Br分子5个束缚态的跃迁偶极矩

    Figure 3.  The transition dipole moments of 5 bound states of 88Sr79Br.

    表 1  5个束缚态的光谱常数

    Table 1.  The spectroscopic constants of the 5 lowest electronic states.

    Λ-S 态Te/cm–1Re/nmωe/cm–1ωeχe/cm–1Be/cm–1αe/(10–4 cm–1)De/eVRe附近主要电子组态/%
    X2Σ+0.00.2740216.170.4990.05381.7313.31011σ212σα13σ042(80.2)
    11σ212σ013σα42(6.9)
    理论[28]0.00.2746212.780.5090.0535
    理论[29]0.00.2799205.60.530.0511.742
    实验[30]0.00.27352160.510.0541
    A2Π14679.3480.2701222.380.53460.05491.2131.33411σ212σ013σ043(86.1)
    理论[28]146570.2722200.570.0544
    理论[29]14269.90.275215.10.540.0521.241
    实验[30]148500.27172220.530.0545
    B2Σ+15376.8030.2702223.030.52720.05521.7991.59711σ212σ013σα42(79.2)
    11σ212σα13σ042(6.1)
    理论[28]152080.2710220.50.520.0547
    理论[29]15222.80.2749214.50.560.0531.831
    实验[30]153520.27012220.530.0552
    C2Π24947.8180.3373201.070.50120.05152.3691.500

    11σ212σ213σ033(80.0)
    11σ212σ013σ043(2.2)
    11σ212σ013σ034(2.8)
    11σα12σα13σ043(2.7)
    理论[28]254910.28101970.490.0509
    理论[29]25323.20.285191.20.460.0492.477
    实验[30]246652050.49
    32Σ+29079.7560.3548238.980.45560.05421.6531.10911σ212σα13σ042(1.3)
    11σα12σ213σ042(69.4)
    11σ212σ013σα42(5.3)
    11σ212σα13σ033(2.9)
    11σ212σ013σα41(.9)
    理论[28]281170.2662420.540.0567
    理论[29]27228.90.27235.80.540.0551.660
    实验[30]289582470.55
    DownLoad: CSV

    表 2  88Sr79Br分子5个束缚态的Gν, BνDν

    Table 2.  The values of Gν, Bν and Dν of 5 lowest electronic states for 88Sr79Br molecule.

    ν0123456789
    X2Σ+Gν/cm–10217.21422.31648.92863.521077.131289.841501.601712.391922.24
    Bν/cm–10.0541700.0540030.0538360.0536630.0534940.0533300.0531650.0529970.0528270.052659
    Dν/(10–8 cm–1)1.2993011.3030531.2846381.2977131.2991151.2953111.2964351.2987901.2960921.292529
    A2ΠGν/cm–114691.8714934.2315175.2515415.9615656.4615896.1216134.0716369.7316603.116834.89
    Bν/cm–10.0557800.0556200.0554620.0552950.0551240.0549760.0548610.0547720.0546870.054578
    Dν/(10–8 cm–1)1.3477031.3551081.3316051.3133711.3318601.3904801.4544301.4760561.4529011.372534
    B2Σ+Gν/cm–115376.5215507.8415738.3315967.8916196.7416425.0616652.6116878.9717103.817327.04
    Bν/cm–10.0551520.0549980.0548420.0546790.0545010.0543260.0541700.0540200.0538600.053722
    Dν/(10–8 cm–1)1.3835361.3809251.3822061.3700451.3522581.3612861.3705001.4305381.4547001.453644
    C2ΠGν/cm–125067.1125478.2925768.525995.0126202.1226394.0326575.3326748.6926915.6527077.76
    Bν/cm–10.0516130.0519290.0526940.0531180.05361730.0539910.0543890.0547620.0551040.055412
    Dν/(10–8 cm–1)7.3425552.0529934.1379824.6299065.8800886.8628567.66976268.61531369.2989999.430722
    32Σ+Gν/cm–131178.7931534.7431825.0332085.2432324.0332546.5132756.7732958.153315333342.76
    Bν/cm–10.0524570.0529860.0534980.0539990.0544840.0549590.0554140.0558430.0562460.056634
    Dν/(10–8 cm–1)8.4879421.6815842.2378262.9046203.6119474.2504994.7821005.2337305.6767206.069434
    DownLoad: CSV

    表 3  88Sr79Br分子A2Π–X2Σ+和B2Σ+–X2Σ+跃迁的Franck-Condon因子

    Table 3.  The Franck-Condon factors of the transitions A2Π–X2Σ+和B2Σ+–X2Σ+ of 88Sr79Br.

    ν'' = 0123456789
    A2Π–X2Σ+
    ν' = 00.6450220.3366880.0980080.0177720.0022640.0002250.0000190.0000010.0000000.000000
    10.4366880.0830760.3031890.1903720.6615330.1653780.0033160.0005680.0000870.000011
    20.0980080.4349730.0008350.1809700.2239530.1132140.0368270.0090540.0018120.000305
    30.0177720.2939910.3188270.0558750.0702560.2562390.1707410.0625310.0184990.004301
    40.0022630.0539210.2476780.1002250.1251480.0109810.1771460.1903500.0897280.031718
    50.0002250.0093920.0997350.2716590.0248980.1604840.0014730.0985320.1700790.114744
    60.0000190.0011590.0227420.1454080.2361220.0000760.1551290.0248340.0464170.151117
    70.0000000.0001100.0034730.0428320.1818750.1781320.0146140.1503550.0621320.011646
    80.0000000.0000080.0003910.0080500.0687360.2026330.0953790.0505040.0734010.096387
    90.0000000.0000000.0000340.0010750.0157630.0980880.2046970.0426850.0891240.031198
    B2Σ+–X2Σ+
    ν' = 00.8256050.2382340.0333470.0026660.0001420.0000060.0000000.0000000.0000000.000000
    10.3882340.6348800.1108140.0942710.0884900.0628730.0403840.0000470.0000060.000000
    20.0333470.4143950.5205520.0903040.0848780.0778530.0673090.0511750.0001650.000020
    30.0026660.0834490.3667730.4232860.0828000.0723010.0613200.0142680.0026570.000419
    40.0001420.0096780.1076910.3174020.3500420.0976380.06022190.0555840.0235730.005001
    50.0000060.0006540.0521620.0876920.2800180.3176410.0831120.079250.0683400.044978
    60.0000000.0000000.0001170.0063410.0989180.2773820.3094020.0812960.0637110.051334
    70.0000000.0000000.0000930.0038610.0573130.0556100.2450250.2927090.0365110.075513
    80.0000000.0000000.0000040.0002450.0072480.0805790.0696750.1865590.2277520.010265
    90.0000000.0000000.0000000.0000120.0005520.0122630.0363220.0699890.1214990.152774
    DownLoad: CSV

    表 4  88Sr79Br分子A2Π–X2Σ+和B2Σ+–X2Σ+跃迁的辐射寿命

    Table 4.  The radiative lifetimes of the transitions A2Π–X2Σ+ and B2Σ+–X2Σ+ of 88Sr79Br.

    TransitionRadiative lifetimes/ns
    ν′ = 0ν′ = 1ν′ = 2
    A2Π–X2Σ+32.2332.3532.56
    B2Σ+–X2Σ+40.9340.9541.22
    DownLoad: CSV
    Baidu
  • [1]

    Yang C L, Zhang X Y, Gao F, Ren T Q 2007 J. Mol. Struct. THEOCHEM 807 147Google Scholar

    [2]

    Wang C, Li N, Xia Y, Zhang X, Ge M, Liu Y, Li Q 2011 Comput. Theor. Chem. 963 319Google Scholar

    [3]

    Short C I, Hauschildt P H 2006 Astrophys. J. 641 494Google Scholar

    [4]

    Carlson K D, Claydon C R 1967 Adv. High Temp. Chem. 1 43Google Scholar

    [5]

    Hansen C J, Bergemann M, Cescutti G, Francois P, Arcones A, Karakas A I, Lind K, Chiappini C 2013 Astron. Astrophys. 551 1Google Scholar

    [6]

    Bergemann M, Hansen C J, Bautista M, Ruchti G 2012 Astron. Astrophys. 546 1Google Scholar

    [7]

    Caffau E, Andrievsky S, Korotin S, Origlia L, Oliva E, Sanna N, Ludwig H G, Bonifacio P 2016 Astron. Astrophys. 585 44Google Scholar

    [8]

    Törring T, Doebl K, Weiler G 1985 Chem. Phys. Lett. 117 539Google Scholar

    [9]

    Ernst W E, Schröder J O 1986 Z. Phys. D:At. Mol. Clusters 1 103Google Scholar

    [10]

    Keijzer F, Teule J M, Bulthuis J, de Graaff G J, Hilgeman M H, Janssen M H M, van Kleef E H, van Leuken J J, Stolte S 1996 Chem. Phys. 207 261Google Scholar

    [11]

    Coxon J A, Dickinson C S 1998 J. Mol. Spectrosc. 190 150Google Scholar

    [12]

    Gurvich L V, Ryabova V G, Khitrov A N 1973 Faraday Symp. Chem. Soc. 8 83Google Scholar

    [13]

    Hildenbrand D L 1977 J. Chem. Phys. 66 3526Google Scholar

    [14]

    Ernst W E, Schröder J O 1986 J. Mol. Spectrosc. 117 444Google Scholar

    [15]

    Dickinson C S, Coxon J A 2003 J. Mol. Spectrosc. 221 269Google Scholar

    [16]

    Schröder J O, Ernst W E 1985 J. Mol. Spectrosc. 112 413Google Scholar

    [17]

    Castano F, Sanchez Rayo M N, Pereira R, Adams J W, Husain D, Schifino J 1994 J. Photochem. Photobiol. , A 83 79Google Scholar

    [18]

    Gunduz S, Akman S 2014 Microchem. J. 116 1Google Scholar

    [19]

    Werner H J, Knowles P J, Knizia G, et al. 2012 MOLPRO, version 2012.1, a package of ab initio Programs

    [20]

    Peterson K A, Figgen D, Goll E, Stoll H, Dolg M 2003 J. Chem. Phys. 119 11099Google Scholar

    [21]

    Werner H-J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H-J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [23]

    Werner H-J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Knowles P J, Werner H-J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [25]

    Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasi-bound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-663

    [26]

    Wu D L, Tan B, Wen Y F, Zeng X F, Xie A D, Yan B 2016 Spectrochim. Acta, Part A 161 101Google Scholar

    [27]

    Fu M K, Ma H T, Cao J W, Bian W S 2017 J. Chem. Phys. 146 134309Google Scholar

    [28]

    Adema Z, Makhlouf S, Taher F 2016 Comput. Theor. Chem. 1093 48Google Scholar

    [29]

    Liu L, Yang C L, Wang M S, Ma X G, Sun Z P 2019 Spectrochim. Acta, Part A 164 162Google Scholar

    [30]

    Huber K P, Herzberg G 1979 Constants of Diatonic Molecules, Molecular spectra molecular structure (Vol. IV) (NewYork: Van Nostrand Reinhold)

    [31]

    Wu D L, Lin C Q, Wen Y F, Xie A D, Yan B 2017 Chin. Phys. B 594 083101Google Scholar

    [32]

    魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰 2016 65 163101Google Scholar

    Wei C L, Liang G Y, Liu X T, Yan P Y, Yan B 2016 Acta. Phys. Sin. 65 163101Google Scholar

    [33]

    Zhang X M, Liang G Y, Li R, Shi D D, Liu Y C, Liu X S, Xu H F, Yan B 2014 Chem. Phys. 443 142Google Scholar

    [34]

    Okabe H 1978 Photochemistry of Small Molecules (New York: Wiley-Interscience)

    [35]

    Zou W L, Liu W J 2005 J. Comput. Chem. 26 106Google Scholar

    [36]

    Bahrini C, Augé-Rochereau F, Rostas J, Taïeb G 2006 Chem. Phys. 330 130Google Scholar

  • [1] Wang Xin-Yu, Wang Yi-Lin, Shi Qian-Han, Wang Qing-Long, Yu Hong-Yang, Jin Yuan-Yuan, Li Song. Theoretical study of potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [2] Theoretical study of the potential energy curves and vibrational levels of low-lying electronic states of SbS. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211441
    [3] Jian Jun, Lei Jiao, Fan Qun-Chao, Fan Zhi-Xiang, Ma Jie, Fu Jia, Li Hui-Dong, Xu Yong-Gen. Theoretical study on thermodynamic properties of NO gas. Acta Physica Sinica, 2020, 69(5): 053301. doi: 10.7498/aps.69.20191723
    [4] Wu Dong-Lan, Yuan Jin-Hong, Wen Yu-Feng, Zeng Xue-Feng, Xie An-Dong. Spectrum and transition characteristics of low excited state of strontium chloride molecule. Acta Physica Sinica, 2019, 68(3): 033101. doi: 10.7498/aps.68.20181770
    [5] Huang Duo-Hui, Wang Fan-Hou, Yang Jun-Sheng, Wan Ming-Jie, Cao Qi-Long, Yang Ming-Chao. Potential energy curves and spectroscopic properties of SnO (X1Σ+, a3Π and A1Π) molecule. Acta Physica Sinica, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [6] Xing Wei, Liu Hui, Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe. MRCI+Q study on spectroscopic parameters and molecular constants of X1Σ+ and A1Π electronic states of the SiSe molecule. Acta Physica Sinica, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [7] Li Song, Han Li-Bo, Chen Shan-Jun, Duan Chuan-Xi. Potential energy function and spectroscopic parameters of SN- molecular ion. Acta Physica Sinica, 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [8] Chen Heng-Jie. Potential energy curves and vibrational levels of ground and excited states of LiAl. Acta Physica Sinica, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [9] Liu Hui, Xing Wei, Shi De-Heng, Zhu Zun-Lue, Sun Jin-Feng. Study on spectroscopic parameters and molecular constants of CS+(X2Σ+) and CS+(A2Π) by MRCI. Acta Physica Sinica, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [10] Sun Jin-Feng, Zhu Zun, Liu Hui, Shi De-Heng. Spectroscopic parameters and molecular constants of CSe(X1Σ+) radical. Acta Physica Sinica, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [11] Fan Qun-Chao, Sun Wei-Guo, Li Hui-Dong, Feng Hao. The full vibrational spectra and dissociation energies of Li2 molecule. Acta Physica Sinica, 2010, 59(7): 4577-4583. doi: 10.7498/aps.59.4577
    [12] Wang Quan-Wu, Chen Heng-Jie, Cheng Xin-Lu, Su Xin-Fang, Tang Hai-Yan. Multi-reference configuration interaction of the ground and low-lying excited states of LiC. Acta Physica Sinica, 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [13] Fan Qun-Chao, Feng Hao, Sun Wei-Guo. Studies on the full vibrational spectra and dissociation energies of some diatomic ions. Acta Physica Sinica, 2010, 59(1): 203-209. doi: 10.7498/aps.59.203
    [14] Liu Yan, Ren Wei-Yi, Wang A-Shu, Liu Song-Hong. Studies on the high-lying vibrational energies and molecular dissociation energies for some electronic states of K2 molecule. Acta Physica Sinica, 2008, 57(3): 1599-1607. doi: 10.7498/aps.57.1599
    [15] Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lüe, Ma Heng, Yang Xiang-Dong. Investigation on vibrational levels, inertial rotation and centrifugal distortion constants of 7Li2(X1Σ+g). Acta Physica Sinica, 2008, 57(1): 165-171. doi: 10.7498/aps.57.165
    [16] Gao Feng, Yang Chuan_Lu, Zhang Xiao_Yan. MRCI potential curves and analytical potential energy functions of the low-lying excited states (1∏,3∏) of ZnHg. Acta Physica Sinica, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [17] Shi De-Heng, Sun Jin-Feng, Liu Yu-Fang, Ma Heng, Zhu Zun-Lue, Yang Xiang-Dong. Investigation of analytic potential energy function, vibrational levels and inertial rotation constants for the 23Πu state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(8): 4454-4460. doi: 10.7498/aps.56.4454
    [18] Shi De-Heng, Sun Jin-Feng, Ma Heng, Zhu Zun-Lue. Investigation of analytic potential energy function, harmonic frequency and vibrational levels for the 23Σ+g state of spin-aligned dimer 7Li2. Acta Physica Sinica, 2007, 56(4): 2085-2091. doi: 10.7498/aps.56.2085
    [19] Hu Shi-De, Sun Wei-Guo, Ren Wei-Yi, Feng Hao. Studies on the full vibrational energies and dissociation energies for some states of alkali hydride molecules. Acta Physica Sinica, 2006, 55(5): 2185-2193. doi: 10.7498/aps.55.2185
    [20] Ren Wei-Yi, Sun Wei-Guo. Studies on the full vibrational energy spectra and molecular dissociation energies for some electronic states of Na2 molecule. Acta Physica Sinica, 2005, 54(2): 594-605. doi: 10.7498/aps.54.594
Metrics
  • Abstract views:  3255
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  27 May 2022
  • Accepted Date:  26 July 2022
  • Available Online:  08 November 2022
  • Published Online:  20 November 2022

/

返回文章
返回
Baidu
map