Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution

Li Jin-Yang Lu Dan-Feng Qi Zhi-Mei

Citation:

End-face reflected LiNbO3 waveguide based stationary miniature Fourier transform spectrometer with two-fold enhanced spectral resolution

Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Miniature Fourier transform spectrometer (FTS) has attracted considerable interest because of its important application in spaceborne spectroscopy and as a portable analytical tool for rapid on-site chemical/biochemical detection. In a previous paper, a stationary miniature FTS constructed with an electro-optic (EO) modulator of a LiNbO3 (LN) waveguide Mach-Zehnder interferometer (MZI) containing push-pull electrodes was demonstrated. This stationary miniature FTS is operated in the near-infrared region with either nonlinear or linear scanning of the modulating voltage. The simple and mirrorless structure renders the device compact, vibration resistant, and cost-effective. However, the spectral resolution of the proposed prototype FTS was not satisfactory due to the limited optical pathlength difference (OPD), thereby limiting the device application. To improve its spectral resolution, the factors affecting the spectral resolution of the LN waveguide-based FTS is investigated in this paper. Findings show that the spectral resolution is inversely proportional to the maximum OPD, which is proportional to the length of the EO modulating region. A simple method for two-fold enhancement of the spectral resolution of the FTS is proposed based on the end-face reflection in LN waveguide interferometer. With the end-face reflection geometry the guided mode can propagate back and forth in the LN waveguide, making the mode passing through the EO modulating region twice and consequently leading to two times enhancement of the OPD. Therefore, the end-face reflection geometry enables to double the maximum OPD of the interferometer without increasing the device size and thus to offer the device a two-fold enhanced spectral resolution according to the equation for FTS resolution. Two prototypes of FTS with and without the end-face reflection structure are prepared using the same commercial LN waveguide EO modulator. The spectral resolutions in terms of the full-width at half maximum (FWHM) at different wavelengths for the two prototypes of FTS are measured using a series of distributed feedback lasers. The FWHM measured at a specific wavelength with the end-face reflection structure is half as large as that obtained without the end-face reflection structure. Experimental results are in excellent agreement with the theoretical data, demonstrating the applicability of the end-face reflection method to the spectral resolution enhancement.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978042, 61377064), the Natural Science Foundation of Beijing, China (Grant No. 3131001), the Research Equipment Development Project of Chinese Academy of Sciences (Grant No. YZ201106), and the State Key Laboratory of NBC Protection for Civilian (Grant No. SKLNBC2014-11).
    [1]

    Coarer E L, Blaize S, Benech P, Stefanon I, Morand A, Lérondel G, Leblond G, Kern P, Fedeli J M, Royer P 2007 Nat. Photonics 1 473

    [2]

    Mendes L S, Oliveira F C C, Suarez P A Z, Rubim J C 2003 Anal. Chim. Acta 493 219

    [3]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 62 030202]

    [4]

    Dong L, Sun G S, Zheng L, Liu X F, Zhang F, Yan G G, Zhao W S, Wang L, Li X G, Wang Z G 2012 Chin. Phys. B 21 047802

    [5]

    Manzardo O, Herzig H P, Marxer C R, Rooij N F 1999 Opt. Lett. 24 1705

    [6]

    Wallrabe U, Solf C, Mohr J, Korvink J G 2005 Sens. Actuators A 123-124 459

    [7]

    Ataman Ç, Urey H 2009 Sens. Actuators A 151 9

    [8]

    Yu K, Lee D, Krishnamoorthy U, Park N, Solgaard O Sens. Actuators A 130-131 523

    [9]

    Chen J J, Zhu Y, Liu B, Wei W, Wang N, Zhang J 2013 Chin. Opt. Lett. 11 053003

    [10]

    Li J Y, Lu D F, Qi Z M 2014 Opt. Lett. 39 3923

    [11]

    Li J Y, Yao Y Q, Wu J J, Qi Z M 2013 Acta Optica Sinica 33 196 (in Chinese) [李金洋, 要彦清, 吴建杰, 祁志美 2013 光学学报 33 196]

    [12]

    Griffiths P R, Haseth J A D 2007 Fourier Transform Infrared Spectrometry (New York:Wiley-Interscience) pp26-30

    [13]

    Li J, Zhu J P, Zhang Y Y, Liu H, Hou X 2013 Acta Phys. Sin. 62 024205 (in Chinese) [李杰, 朱京平, 张云尧, 刘宏, 侯洵 2013 62 024205]

    [14]

    Kauppinen J K 1984 Appl. Spectrosc. 38 778

    [15]

    Lacan A, Bréon F M, Rosak A, Brachet F, Roucayrol L, Etcheto P, Casteras C, Salan Y 2010 Opt. Express 18 8311

    [16]

    Jovanov V, Bunte E, Stiebig H, Knipp D 2011 Opt. Lett. 36 274

    [17]

    Kauppinen J K, Moffatt D J, Cameron D G, Mantsch H H 1981 Appl. Opt. 20 1866

    [18]

    Li J Y, Lu D F, Qi Z M 2014 Acta Phys. Sin. 63 077801 (in Chinese) [李金洋, 逯丹凤, 祁志美 2014 63 077801]

    [19]

    Wu Y K, Wang W S 2008 J. Lightwave Technol. 26 286

  • [1]

    Coarer E L, Blaize S, Benech P, Stefanon I, Morand A, Lérondel G, Leblond G, Kern P, Fedeli J M, Royer P 2007 Nat. Photonics 1 473

    [2]

    Mendes L S, Oliveira F C C, Suarez P A Z, Rubim J C 2003 Anal. Chim. Acta 493 219

    [3]

    Li X X, Gao M G, Xu L, Tong J J, Wei X L, Feng M C, Jin L, Wang Y P, Shi J G 2013 Acta Phys. Sin. 62 030202 (in Chinese) [李相贤, 高闽光, 徐亮, 童晶晶, 魏秀丽, 冯明春, 金岭, 王亚萍, 石建国 2013 62 030202]

    [4]

    Dong L, Sun G S, Zheng L, Liu X F, Zhang F, Yan G G, Zhao W S, Wang L, Li X G, Wang Z G 2012 Chin. Phys. B 21 047802

    [5]

    Manzardo O, Herzig H P, Marxer C R, Rooij N F 1999 Opt. Lett. 24 1705

    [6]

    Wallrabe U, Solf C, Mohr J, Korvink J G 2005 Sens. Actuators A 123-124 459

    [7]

    Ataman Ç, Urey H 2009 Sens. Actuators A 151 9

    [8]

    Yu K, Lee D, Krishnamoorthy U, Park N, Solgaard O Sens. Actuators A 130-131 523

    [9]

    Chen J J, Zhu Y, Liu B, Wei W, Wang N, Zhang J 2013 Chin. Opt. Lett. 11 053003

    [10]

    Li J Y, Lu D F, Qi Z M 2014 Opt. Lett. 39 3923

    [11]

    Li J Y, Yao Y Q, Wu J J, Qi Z M 2013 Acta Optica Sinica 33 196 (in Chinese) [李金洋, 要彦清, 吴建杰, 祁志美 2013 光学学报 33 196]

    [12]

    Griffiths P R, Haseth J A D 2007 Fourier Transform Infrared Spectrometry (New York:Wiley-Interscience) pp26-30

    [13]

    Li J, Zhu J P, Zhang Y Y, Liu H, Hou X 2013 Acta Phys. Sin. 62 024205 (in Chinese) [李杰, 朱京平, 张云尧, 刘宏, 侯洵 2013 62 024205]

    [14]

    Kauppinen J K 1984 Appl. Spectrosc. 38 778

    [15]

    Lacan A, Bréon F M, Rosak A, Brachet F, Roucayrol L, Etcheto P, Casteras C, Salan Y 2010 Opt. Express 18 8311

    [16]

    Jovanov V, Bunte E, Stiebig H, Knipp D 2011 Opt. Lett. 36 274

    [17]

    Kauppinen J K, Moffatt D J, Cameron D G, Mantsch H H 1981 Appl. Opt. 20 1866

    [18]

    Li J Y, Lu D F, Qi Z M 2014 Acta Phys. Sin. 63 077801 (in Chinese) [李金洋, 逯丹凤, 祁志美 2014 63 077801]

    [19]

    Wu Y K, Wang W S 2008 J. Lightwave Technol. 26 286

  • [1] Ma Tao, Ma Jia-He, Liu Heng, Tian Yong-Sheng, Liu Shao-Hui, Wang Fang. Electro-optic tunable directional coupler based on a LiNbO3/Na surface plasmonic waveguide. Acta Physica Sinica, 2022, 71(5): 054205. doi: 10.7498/aps.71.20211217
    [2] Zeng Xiang-Yu, Wang Wei, Liu Cheng, Shan Chang-Gong, Xie Yu, Hu Qi-Hou, Sun You-Wen, Polyakov Alexander Viktorovich. Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution Fourier transform infrared spectroscopy. Acta Physica Sinica, 2021, 70(20): 200201. doi: 10.7498/aps.70.20210640
    [3] Zhang Teng, Li Da-Wei, Wang Tao, Cui Yong, Zhang Tian-Xiong, Wang Li, Zhang Jie, Xu Guang. Spectral shaping of picosecond petawatt laser system based on lithium niobate birefringent crystal. Acta Physica Sinica, 2021, 70(8): 084202. doi: 10.7498/aps.70.20201719
    [4] Wang Hong-Liang, Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu, Wang Wei-Biao. Design and analysis of medium wave infrared miniature static Fourier transform spectrometer. Acta Physica Sinica, 2018, 67(6): 060702. doi: 10.7498/aps.67.20172599
    [5] Di Hui-Ge, Hua Hang-Bo, Zhang Jia-Qi, Zhang Zhan-Fei, Hua Deng-Xin, Gao Fei, Wang Li, Xin Wen-Hui, Zhao Heng. Design and analysis of high-spectral resolution lidar discriminator. Acta Physica Sinica, 2017, 66(18): 184202. doi: 10.7498/aps.66.184202
    [6] Zhang Yun, Wang Xue-Wei, Bai Hong-Mei. First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals. Acta Physica Sinica, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [7] Chen Cheng, Liang Jing-Qiu, Liang Zhong-Zhu, Lü Jin-Guang, Qin Yu-Xin, Tian Chao, Wang Wei-Biao. Influence on the recovered spectrum caused by thermal optics effect of the collimation lens used in static Fourier transform infrared spectrometer. Acta Physica Sinica, 2015, 64(13): 130703. doi: 10.7498/aps.64.130703
    [8] Tian Yuan, Sun You-Wen, Xie Pin-Hua, Liu Cheng, Liu Wen-Qing, Liu Jian-Guo, Li Ang, Hu Ren-Zhi, Wang Wei, Zeng Yi. Observation of ambient CH4 variations using ground-based high resolution Fourier transform solar spectrometry. Acta Physica Sinica, 2015, 64(7): 070704. doi: 10.7498/aps.64.070704
    [9] Li Jin-Yang, Lu Dan-Feng, Qi Zhi-Mei. Analyses of wavelength dependence of the electro-optic overlap integral factor for LiNbO3 channel waveguides. Acta Physica Sinica, 2014, 63(7): 077801. doi: 10.7498/aps.63.077801
    [10] Chen Huo-Yao, Liu Zheng-Kun, Wang Qing-Bo, Yi Tao, Yang Guo-Hong, Hong Yi-Lin, Fu Shao-Jun. Effect of curve groove on the spectral resolution for soft X-ray holographic flat-field gratings. Acta Physica Sinica, 2014, 63(23): 234203. doi: 10.7498/aps.63.234203
    [11] Hou Jian-Ping, Zhao Chen-Yang, Yang Nan, Hao Jian-Ping, Zhao Jian-Lin. Measurement of end-face reflection property of micro-nano fibers. Acta Physica Sinica, 2013, 62(14): 144216. doi: 10.7498/aps.62.144216
    [12] Li Jie, Zhu Jing-Ping, Zhang Yun-Yao, Liu Hong, Hou Xun. Spectral zooming birefringent imaging spectrometer. Acta Physica Sinica, 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [13] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Study on chromatic dispersion of beam splitter in spatially modulated Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [14] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Theoretical analysis on stationary Gaussian random noise in narrowband Fourier transform spectrometer. Acta Physica Sinica, 2012, 61(7): 070704. doi: 10.7498/aps.61.070704
    [15] Wang Bo, Liang Zhong-Zhu, Kong Yan-Mei, Liang Jing-Qiu, Fu Jian-Guo, Zheng Ying, Zhu Wan-Bin, Lü Jin-Guang, Wang Wei-Biao, Pei Shu, Zhang Jun. Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer. Acta Physica Sinica, 2010, 59(2): 907-912. doi: 10.7498/aps.59.907
    [16] Xiangli Bin, Yuan Yan, Lü Qun-Bo. Spectral transfer function of the Fourier transform spectral imager. Acta Physica Sinica, 2009, 58(8): 5399-5405. doi: 10.7498/aps.58.5399
    [17] Shi Li-Hong, Yan Wen-Bo. Study on infrared absorption spectra of congruent lithium niobate crystals at low temperature. Acta Physica Sinica, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [18] Du Hua-Dong, Huang Si-Xun, Shi Han-Qing. Method and experiment of channel selection for high spectral resolution data. Acta Physica Sinica, 2008, 57(12): 7685-7692. doi: 10.7498/aps.57.7685
    [19] Xue Ting, Yu Jian, Yang Tian-Xin, Ni Wen-Jun, Li Shi-Chen. . Acta Physica Sinica, 2002, 51(1): 91-98. doi: 10.7498/aps.51.91
    [20] MAI ZHEN-HONG, ZHOU TANG. THE MEASURMENTS OF THE REFRACTIVE INDICES AND THE TRANSMISSIVITIES OF Sr4NaLiNb10O30 SINGLE CRYSTALS. Acta Physica Sinica, 1981, 30(9): 1259-1263. doi: 10.7498/aps.30.1259
Metrics
  • Abstract views:  6542
  • PDF Downloads:  166
  • Cited By: 0
Publishing process
  • Received Date:  17 July 2014
  • Accepted Date:  05 December 2014
  • Published Online:  05 June 2015

/

返回文章
返回
Baidu
map