搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种用于中微子探测的3-inch光电倍增管的优化设计

郭乐慧 田进寿 卢裕 李红伟

引用本文:
Citation:

一种用于中微子探测的3-inch光电倍增管的优化设计

郭乐慧, 田进寿, 卢裕, 李红伟

Optimization of the 3-inch photomultiplier tube for the neutrino detection

Guo Le-Hui, Tian Jin-Shou, Lu Yu, Li Hong-Wei
PDF
导出引用
  • 光电倍增管(PMT)作为当前中微子振荡研究的核心探测器件要求具有尽可能大的阴极有效探测面积与较小的渡越时间弥散,其时间特性直接决定了中微子的探测精度.针对高能粒子探测需求,本文优化设计了一种大阴极面超短型3-inch光电倍增管,基于Furman模型与电子轨迹追踪法展示了第一倍增极产生的二次电子向第二倍增极渡越的电子轨迹过程,据此对倍增极结构进行了局部优化;将Monte Carlo法与有限积分法相结合比较了不同分压下PMT内部电势分布对电子轨迹的影响并对优化后的大阴极面PMT的均匀性、收集效率、阴极至第一倍增极间渡越时间弥散(TTSCD1)等关键参数进行了统计与分析;利用particle-in-cell经典算法获得了此款PMT的增益特性.结果表明,优化后的大阴极面超短型PMT阴极有效探测面积较传统模型相比有效提升了30.87%,总长度仅103 mm,为目前最短的3-inch PMT设计结构;在1000 V阳极电压下,阴极顶点单光电子TTSCD1为0.75 ns,较传统3-inch PMT模型相比提升了2.73倍,平均收集效率可达96.40%;当阳极电压为1100 V时,其增益可达106以上.
    Photomultiplier tubes (PMTs) widely used in neutrino detectors are critical to reconstructing the direction of the neutrino accurately. Large photocathode coverage, compact design and good time properties for single-photoelectron light are essential performances to meet the requirements for the next generation detectors. Therefore, a novel digital optical module housing 31 3-inch. diameter PMTs is developed. In order to maximize the effective photocathode area and improve the time performance, a modified PMT with a larger photocathode area and 10 dynodes is optimized with the aid of the CST Particle Studio in this paper. Based on the Monte Carlo method and finite integration theory, the main characteristics of the modified PMT, such as uniformity, collection efficiency, gain and transit-time spread, are investigated. As the earlier stages of the PMT contribute the greatest weight to the total transit time spread, the transit time spread of single-photoelectron from photocathode to the first dynode (TTSCD1) is discussed mainly in this paper. The influences of the dynodes position on collection efficiency and TTSCD1 are analyzed. The voltage ratio scheme is also optimized slightly to obtain better collection efficiency and minimum TTSCD1. By tracing the trajectories of secondary electrons from the first to the second dynode stage, dynodes are optimized for improving timing performance and secondary electrons collection efficiency. Direct collection efficiency of secondary electrons from the first dynode to the second is improved from 56.38% to 61.01%. The effective photocathode diameter of the modified PMT is increased from traditional 72 mm to 77.5 mm and the effective area of photocathode is increased by 30.87% compared with the traditional one. What is more, the length of the new PMT is reduced to 103 mm so that the available space of the multi-PMT digital optical module is increased by 63.09% compared with the traditional one containing the high-voltage power supplies, front-end and readout electronics, refrigerating equipment, etc. The simulation results show that the mean collection efficiency of the modified PMT is ~96.40% with the supply voltage of 1000 V and it changes little by changing the supply voltage from 900 V to 1300 V. The mean transit time spread from photocathode to the first dynode is ~1 ns which is better than the transit time spread of the traditional model. And the gain can reach above 106 with a supply voltage of above 1100 V.
      通信作者: 田进寿, tianjs@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11475209)资助的课题.
      Corresponding author: Tian Jin-Shou, tianjs@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475209).
    [1]

    Fukuda Y, Hayakawa T, Ichihara E, et al. 1998Phys. Rev. Lett. 81 1158

    [2]

    Araki T, Enomoto S, Furuno K, et al. 2005Nature 436 499

    [3]

    Cao J 2014Sci. Sin.:Phys. Mech. Astron. 44 1025(in Chinese)[曹俊2014中国科学:物理学力学天文学44 1025]

    [4]

    Fukuda S, Fukuda Y, Hayakawa T, et al. 2003Nucl. Instrum. Meth. A 501 418

    [5]

    Katz U F, Spiering C 2012Prog. Part. Nucl. Phys. 67 651

    [6]

    Hasankiadeh Q D, Kavatsyuk O, Lohner H, Peek H, Steijger J 2013Nucl. Instrum. Meth. A 725 158

    [7]

    Kooijman P, Berbee E, de-Boer R, Rookhuizen H B, Heine E, Hogenbirk J, deJong M, Kok H, Korporaal A, Mos S, Mul G, Peek H, Timmer P, Werneke P, deWolf E 2011Nucl. Instrum. Meth. A 626 S139

    [8]

    Katz U F 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p38

    [9]

    Aiello S, Leonora E, Ameli F, et al. 2013J. Instrum. 8 07001

    [10]

    Kavatsyuk O, Dorosti-Hasankiadeh Q, Lohner H 2012Nucl. Instrum. Meth. A 695 338

    [11]

    Adrian-Martinez S, Ageron M, Aharonian F, et al. 2014Eur. Phys. J. C 74 3056

    [12]

    Aiello S, Classen L, Giordano V, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p118

    [13]

    Bormuth R, Classen L, Kalekin O, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p114

    [14]

    Leskovar B, Lo C C 1975Nucl. Instrum. Meth. 123 145

    [15]

    CST Particle Studio, Computer Simulation Technology Corporation https://www.cst.com/Products/CSTPS[2016-07-12]

    [16]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p44

    [17]

    Fen K S, Lu W Z, Zhu Z H 2005Shanxi Electron. Technol. 06 43(in Chinese)[冯奎胜, 卢万铮, 朱章虎2005山西电子技术06 43]

    [18]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006Acta Phys. Sin. 55 3368(in Chinese)[田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰2006 55 3368]

    [19]

    Furman M A, Pivi M T F 2002Phys. Rev. ST Accel. Beams 5 124404

    [20]

    Zhou R M 2015Photoelectric Emission, Secondary Electron Emission and Photomultiplier Tube (1st Ed.) (Chengdu:University of Electronic Science and Technology of China Press) p127(in Chinese)[周荣楣2015光电发射、次级电子发射与光电倍增管(第一版) (成都:电子科技大学出版社)第127页]

    [21]

    Suzuki A, Mori M, Kaneyuki K, Tanimori T, Takeuchi J, Kyushimaand H, Ohashi Y 1993Nucl. Instrum. Meth. A 329 299

    [22]

    Flyckt S O, Marmonier C 2002Photomultiplier Tubes-Principles and Applications (2nd Ed.) (Brive:Photonis) p14

    [23]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p45

  • [1]

    Fukuda Y, Hayakawa T, Ichihara E, et al. 1998Phys. Rev. Lett. 81 1158

    [2]

    Araki T, Enomoto S, Furuno K, et al. 2005Nature 436 499

    [3]

    Cao J 2014Sci. Sin.:Phys. Mech. Astron. 44 1025(in Chinese)[曹俊2014中国科学:物理学力学天文学44 1025]

    [4]

    Fukuda S, Fukuda Y, Hayakawa T, et al. 2003Nucl. Instrum. Meth. A 501 418

    [5]

    Katz U F, Spiering C 2012Prog. Part. Nucl. Phys. 67 651

    [6]

    Hasankiadeh Q D, Kavatsyuk O, Lohner H, Peek H, Steijger J 2013Nucl. Instrum. Meth. A 725 158

    [7]

    Kooijman P, Berbee E, de-Boer R, Rookhuizen H B, Heine E, Hogenbirk J, deJong M, Kok H, Korporaal A, Mos S, Mul G, Peek H, Timmer P, Werneke P, deWolf E 2011Nucl. Instrum. Meth. A 626 S139

    [8]

    Katz U F 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p38

    [9]

    Aiello S, Leonora E, Ameli F, et al. 2013J. Instrum. 8 07001

    [10]

    Kavatsyuk O, Dorosti-Hasankiadeh Q, Lohner H 2012Nucl. Instrum. Meth. A 695 338

    [11]

    Adrian-Martinez S, Ageron M, Aharonian F, et al. 2014Eur. Phys. J. C 74 3056

    [12]

    Aiello S, Classen L, Giordano V, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p118

    [13]

    Bormuth R, Classen L, Kalekin O, et al. 20146th International Workshop on Very Large Volume Neutrino Telescopes Stockholm, Sweden, August 5-13, 2013 p114

    [14]

    Leskovar B, Lo C C 1975Nucl. Instrum. Meth. 123 145

    [15]

    CST Particle Studio, Computer Simulation Technology Corporation https://www.cst.com/Products/CSTPS[2016-07-12]

    [16]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p44

    [17]

    Fen K S, Lu W Z, Zhu Z H 2005Shanxi Electron. Technol. 06 43(in Chinese)[冯奎胜, 卢万铮, 朱章虎2005山西电子技术06 43]

    [18]

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006Acta Phys. Sin. 55 3368(in Chinese)[田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰2006 55 3368]

    [19]

    Furman M A, Pivi M T F 2002Phys. Rev. ST Accel. Beams 5 124404

    [20]

    Zhou R M 2015Photoelectric Emission, Secondary Electron Emission and Photomultiplier Tube (1st Ed.) (Chengdu:University of Electronic Science and Technology of China Press) p127(in Chinese)[周荣楣2015光电发射、次级电子发射与光电倍增管(第一版) (成都:电子科技大学出版社)第127页]

    [21]

    Suzuki A, Mori M, Kaneyuki K, Tanimori T, Takeuchi J, Kyushimaand H, Ohashi Y 1993Nucl. Instrum. Meth. A 329 299

    [22]

    Flyckt S O, Marmonier C 2002Photomultiplier Tubes-Principles and Applications (2nd Ed.) (Brive:Photonis) p14

    [23]

    Hamamatsu Photonics K. K. 2007Photomultiplier Tubes Basics and Applications (3rd Ed.) (Hamamatsu:Hamamatsu Photonics K. K. Electron Tube Division) p45

  • [1] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展.  , 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [2] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列.  , 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [3] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响.  , 2022, 0(0): . doi: 10.7498/aps.7120220537
    [4] 向雨琰, 李松, 马跃. 光电倍增管输出电子流脉冲堆叠对光子计数法测距的影响.  , 2022, 71(21): 214206. doi: 10.7498/aps.71.20220537
    [5] 王翀, 党文斌, 朱炳利, 杨凯, 杨嘉皓, 韩江浩. 光电倍增管时间测量误差补偿方法研究.  , 2022, 71(22): 222901. doi: 10.7498/aps.71.20221193
    [6] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [7] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器.  , 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [8] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器.  , 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [9] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器.  , 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [10] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器.  , 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [11] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器.  , 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [12] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器.  , 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [13] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器.  , 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [14] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响.  , 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [15] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究.  , 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [16] 张岭梓, 左玉华, 曹权, 薛春来, 成步文, 张万昌, 曹学蕾, 王启明. 单载流子光电探测器的高速及高饱和功率的研究.  , 2012, 61(13): 138501. doi: 10.7498/aps.61.138501
    [17] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究.  , 2012, 61(5): 057201. doi: 10.7498/aps.61.057201
    [18] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化.  , 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [19] 王茜蒨, 魏光辉. 机油类产品激光诱导荧光时间特性的研究.  , 2002, 51(5): 1031-1034. doi: 10.7498/aps.51.1031
    [20] 王绍民. 光电倍增管时间分辨特性的探讨.  , 1962, 18(11): 600-604. doi: 10.7498/aps.18.600
计量
  • 文章访问数:  6358
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-16
  • 修回日期:  2016-08-08
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map