Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Artificial synapses based on layered multi-component metal oxides

Liu Qiang Ni Yao Liu Lu Sun Lin Liu Jia-Qi Xu Wen-Tao

Citation:

Artificial synapses based on layered multi-component metal oxides

Liu Qiang, Ni Yao, Liu Lu, Sun Lin, Liu Jia-Qi, Xu Wen-Tao
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Neuromorphic electronics has received considerable attention recent years, and its basic functional units are synaptic electronic devices. A two-terminal artificial synapse with sandwiched structure emulates plasticity of the biological synapses under the action of nerve-like electrical impulse signals. In this paper, P3 phase Na2/3Ni1/3Mn2/3O2 multi-element metal oxides with layered structure are synthesized by sol-gel process. Owing to the fact that Na+ is easy to embed/eject into its crystal structure, an ion-migrating artificial synapse based on Na2/3Ni1/3Mn2/3O2 is designed and fabricated. The device emulates important synaptic plasticity, such as excitatory postsynaptic current, paired-pulse facilitation, spike-number dependent plasticity, spike-frequency dependent plasticity, spike-voltage amplitude dependent plasticity and spike-duration dependent plasticity. The device realizes the identification and response to Morse code commands.
      Corresponding author: Xu Wen-Tao, wentao@nankai.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. T2125005), the Tianjin Science Foundation for Distinguished Young Scholars, China (Grant No. 19JCJQJC61000), and the Shenzhen Science and Technology Project, China (Grant No. JCYJ20210324121002008).
    [1]

    Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar

    [2]

    Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar

    [3]

    Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar

    [4]

    Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar

    [5]

    Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar

    [6]

    Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar

    [7]

    Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar

    [8]

    Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar

    [9]

    Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar

    [10]

    Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar

    [11]

    Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar

    [12]

    Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar

    [13]

    Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar

    [14]

    Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar

    [15]

    Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar

    [16]

    Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar

    [17]

    Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar

    [18]

    Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar

    [19]

    Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar

    [20]

    Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar

    [21]

    Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar

    [22]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [23]

    Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar

    [24]

    Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar

    [25]

    Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar

    [26]

    Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar

    [27]

    Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar

    [28]

    Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar

    [29]

    Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar

    [30]

    Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar

    [31]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar

    [33]

    Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar

    [34]

    Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar

    [35]

    Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar

    [36]

    Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar

    [37]

    Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar

    [38]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [39]

    Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar

    [40]

    López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar

    [41]

    Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar

    [42]

    郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 69 238501Google Scholar

    Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar

    [43]

    Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar

    [44]

    Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar

    [45]

    Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar

    [46]

    Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar

  • 图 1  (a) 生物神经元及突触结构示意图; (b) 人工突触电子器件结构示意图; (c) P3相Na2/3Ni1/3Mn2/3O2结构示意图

    Figure 1.  (a) Schematic diagram of biological neuron and synapse structure; (b) schematic diagram of artificial synaptic electronic device structure; (c) schematic diagram of the structure of P3 phase Na2/3Ni1/3Mn2/3O2.

    图 2  (a) Na2/3Ni1/3Mn2/3O2粉末X射线衍射测试图; (b) Na2/3Ni1/3Mn2/3O2粉末扫描电子显微镜测试图; (c) Na2/3Ni1/3Mn2/3O2粉末X射线能谱分析图; (d) Na2/3Ni1/3Mn2/3O2活性层扫描电子显微镜表面形貌测试图; (e) 底电极铝箔、Na2/3Ni1/3Mn2/3O2活性层与PEO-Na电解质薄层扫描电子显微镜断面形貌测试图; (f) Na2/3Ni1/3Mn2/3O2活性层原子力显微镜测试图

    Figure 2.  (a) X-ray diffraction test diagram of Na2/3Ni1/3Mn2/3O2 powder; (b) scanning electron microscope test diagram of Na2/3Ni1/3Mn2/3O2 powder; (c) EDS test diagram of Na2/3Ni1/3Mn2/3O2 powder; (d) surface topography test diagram of Na2/3Ni1/3Mn2/3O2 active layer scanning electron microscope ; (e) bottom electrode Al foil, Na2/3Ni1/3Mn2/3O2 active layer and PEO-Na electrolyte thin layer scanning electron microscope cross-sectional morphology test diagram; (f) atom force microscope test diagram of Na2/3Ni1/3Mn2/3O2 active layer.

    图 3  (a) 单次阻变特性测试; (b) 连续50次阻变特性稳定能力测试; (c) 对器件施加单个幅值为0.2 V的电脉冲信号所产生的EPSC; (d) 对器件连续施加两个幅值为0.2 V的电脉冲信号所产生的PPF; 对器件施加多对时间间隔不同幅值为0.2 V的电脉冲信号所产生的(e) PPF以及(f) PPF指数

    Figure 3.  (a) Single resistance characteristic test; (b) 50 consecutive tests of resistance characteristic stability; (c) EPSC generated by applying a single electrical pulse signal with an amplitude of 0.2 V to the device; (d) PPF generated by continuously applying two electrical pulse signals with an amplitude of 0.2 V to the device; (e) PPF and (f) PPF index generated by applying multiple pairs of electrical pulse signals with different amplitudes of 0.2 V to the device.

    图 4  对器件连续施加10个幅值为0.2 V的电脉冲信号所产生的 (a) SNDP以及(b) SNDP 指数; (c) 对器件施加幅值从0 V—4 V—0 V变化的10组电脉冲信号循环所产生的SVDP; 对器件施加多个脉冲宽度不同幅值为0.2 V的电脉冲信号所产生的(d) SDDP以及(e) SDDP 指数; (f) 对器件连续施加多组频率不同幅值为0.2 V的电脉冲信号所产生的SFDP

    Figure 4.  (a) SNDP and (b) SNDP index generated by continuously applying 10 electrical pulse signals with an amplitude of 0.2 V to the device; (c) 10 groups of amplitudes varying from 0 V to 4 V to 0 V are applied to the device SVDP generated by electrical pulse signal cycle; (d) SDDP and (e) SDDP index generated by applying multiple electrical pulse signals with different pulse widths and amplitudes of 0.2 V to the device; (f) SFDP generated by continuously applying multiple groups of electrical pulse signals with the different frequencies and amplitudes of 0.2 V to the device.

    图 5  对器件施加内容为Na2/3 (a), Ni1/3 (b), Mn2/3 (c), O2 (d)的摩斯电码制式的电脉冲信号所产生的突触后电流响应

    Figure 5.  Post-synaptic current response generated by applying Morse code electrical pulse signals with content of (a) Na2/3, (b) Ni1/3, (c) Mn2/3, (d) O2 to the device.

    Baidu
  • [1]

    Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar

    [2]

    Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar

    [3]

    Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar

    [4]

    Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar

    [5]

    Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar

    [6]

    Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar

    [7]

    Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar

    [8]

    Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar

    [9]

    Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar

    [10]

    Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar

    [11]

    Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar

    [12]

    Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar

    [13]

    Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar

    [14]

    Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar

    [15]

    Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar

    [16]

    Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar

    [17]

    Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar

    [18]

    Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar

    [19]

    Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar

    [20]

    Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar

    [21]

    Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar

    [22]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [23]

    Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar

    [24]

    Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar

    [25]

    Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar

    [26]

    Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar

    [27]

    Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar

    [28]

    Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar

    [29]

    Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar

    [30]

    Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar

    [31]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar

    [33]

    Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar

    [34]

    Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar

    [35]

    Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar

    [36]

    Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar

    [37]

    Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar

    [38]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [39]

    Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar

    [40]

    López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar

    [41]

    Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar

    [42]

    郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 69 238501Google Scholar

    Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar

    [43]

    Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar

    [44]

    Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar

    [45]

    Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar

    [46]

    Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar

  • [1] Li Yang-Fan, Guo Hong-Xia, Zhang Hong, Bai Ru-Xue, Zhang Feng-Qi, Ma Wu-Ying, Zhong Xiang-Li, Li Ji-Fang, Lu Xiao-Jie. Heavy ion single event effect in double-trench SiC metal-oxide-semiconductor field-effect transistors. Acta Physica Sinica, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [2] Li Rui, Xu Bang-Lin, Zhou Jian-Fang, Jiang En-Hua, Wang Bing-Hong, Yuan Wu-Jie. A synaptic plasticity induced change in synaptic intensity variation and neurodynamic transition during awakening-sleep cycle. Acta Physica Sinica, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [3] Li Yan, Chen Xin-Li, Wang Wei-Sheng, Shi Zhi-Wen, Zhu Li-Qiang. Egg shell membrane based electrolyte gated oxide neuromorphic transistor. Acta Physica Sinica, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [4] Ju Xiao-Lu, Li Ke, Yu Fu-Cheng, Xu Ming-Wei, Deng Biao, Li Bin, Xiao Ti-Qiao. Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell. Acta Physica Sinica, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [5] Hua Hong-Tao, Lu Bo, Gu Hua-Guang. Nonlinear mechanism of excitatory autapse-induced reduction or enhancement of firing frequency of neuronal bursting. Acta Physica Sinica, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [6] Guo Ke-Xin, Yu Hai-Yang, Han Hong, Wei Huan-Huan, Gong Jiang-Dong, Liu Lu, Huang Qian, Gao Qing-Yun, Xu Wen-Tao. Artificial synapse based on MoO3 nanosheets prepared by hydrothermal synthesis. Acta Physica Sinica, 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [7] Chen Yi-Hao, Xu Wei, Wang Yu-Qi, Wan Xiang, Li Yue-Feng, Liang Ding-Kang, Lu Li-Qun, Liu Xin-Wei, Lian Xiao-Juan, Hu Er-Tao, Guo Yu-Feng, Xu Jian-Guang, Tong Yi, Xiao Jian. Fabrication of synaptic memristor based on two-dimensional material MXene and realization of both long-term and short-term plasticity. Acta Physica Sinica, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [8] Xue Xiao-Dan, Wang Mei-Li, Shao Yu-Zhu, Wang Jun-Song. Neural firing rate homeostasis via inhibitory synaptic plasticity. Acta Physica Sinica, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [9] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [10] Wang Ji-Fei, Lin Dong-Xu, Yuan Yong-Bo. Recent progress of ion migration in organometal halide perovskite. Acta Physica Sinica, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [11] Li Ping, Xu Yu-Tang. Monte Carlo simulation of time-dependent dielectric breakdown of oxide caused by migration of oxygen vacancies. Acta Physica Sinica, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [12] Ding Xue-Li, Li Yu-Ye. Period-adding bifurcation of neural firings induced by inhibitory autapses with time-delay. Acta Physica Sinica, 2016, 65(21): 210502. doi: 10.7498/aps.65.210502
    [13] Cao Ru-Nan, Xu Fei, Zhu Jia-Bin, Ge Sheng, Wang Wen-Zhen, Xu Hai-Tao, Xu Run, Wu Yang-Lin, Ma Zhong-Quan, Hong Feng, Jiang Zui-Min. Temperature-dependent time response characteristic of photovoltaic performance in planar heterojunction perovskite solar cell. Acta Physica Sinica, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [14] Meng Fan-Yi, Duan Shu-Kai, Wang Li-Dan, Hu Xiao-Fang, Dong Zhe-Kang. An improved WOx memristor model with synapse characteristic analysis. Acta Physica Sinica, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [15] Ren Guo-Dong, Wu Gang, Ma Jun, Chen Yang. Simulation of electric activity of neuron by setting up a reliable neuronal circuit driven by electric autapse. Acta Physica Sinica, 2015, 64(5): 058702. doi: 10.7498/aps.64.058702
    [16] Wang Mei-Li, Wang Jun-Song. Dynamical balance between excitation and inhibition of feedback neural circuit via inhibitory synaptic plasticity. Acta Physica Sinica, 2015, 64(10): 108701. doi: 10.7498/aps.64.108701
    [17] Xia Xiao-Fei, Wang Jun-Song. Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study. Acta Physica Sinica, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [18] Li Chun-Guang, Chen Jun. Chaos in a neuron model with adaptive feedback synapse: Electronic circuit design. Acta Physica Sinica, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [19] XIAO DING-QUAN, WEI LI-FAN, LI ZI-SEN, ZHU JIAN-GUO, QIAN ZHENG-HONG, PENG WEN-BIN. MODELLING OF MULTI-ION-BEAM REACTIVE COSPUTTERING OF METAL OXIDE THIN FILMS (Ⅱ)——NUMERICAL CALCULATION AND RESULTS DISCUSSION. Acta Physica Sinica, 1996, 45(2): 345-352. doi: 10.7498/aps.45.345
    [20] XIAO DING-QUAN, WEI LI-FAN, LI ZI-SEN, ZHU JIAN-GUO, QIAN ZHENG-HONG, PENG WEN-BIN. MODELLING OF MULTI-ION-BEAM REACTIVE COSPUTTERING OF METAL OXIDE THIN FILMS (I)——ESTABLISHMENT OF THE MODEL. Acta Physica Sinica, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
Metrics
  • Abstract views:  6633
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2022
  • Accepted Date:  10 April 2022
  • Available Online:  21 July 2022
  • Published Online:  20 July 2022

/

返回文章
返回
Baidu
map